INSPIRING PEOPLE GREAT SOLUTIONS

$\square \square \square$

ROTARY TABLES
LINEAR SYSTEM
HANDLING
SOFTWARE

TC Rotary indexing table
TR Rotary indexing ring table 36 EF2 Rotary table control system

CUSTOMER-SPECIFIC SOLUTIONS

SR/SK Indexing machine bases

LINEAR ASSEMBLY SYSTEM
LS 280 Linear Assembly System

W.A.S. 2

FOUR STEPS TO PERFECT AUTOMATION

Experience a product portfolio with unparalleled scope: from basic machines, through handling units, right up to plates, attachments and custom solutions. All components can be controlled using the WEISS Application Software (W.A.S. 2) for fast and easy commissioning.
 components

HANDLING MODULES

$22,000 \mathrm{~m}^{2}$

PRODUCTION / MANUFACTURING AREA

DEVELOPMENT

FITTING

MEASURING

For us, quality comes first. Our rotary indexing tables and automation components have earned a legendary reputation in terms of reliability, robustness and precision. Our comprehensive manufacturing expertise plays a key part in this regard. Working in interdisciplinary teams, we develop precise solutions for our customers - with the right technical and economic attributes. Our new measuring centre at the production location in Buchen also supports this high quality standard. All large components with diameters in excess of 800 mm are measured with extreme precision here prior to fitting.

MANUFACTURING EXPERTISE SINCE 1969

WEISS QUALITY FROM CLEVELAND TO SHANGHAI:
\square
of \square
50

- 13 \qquad
\qquad $2,800 \mathrm{~m}$

We are more than just a component supplier for our customers. In fact, we are a solution partner that can help you reduce time and costs - with products, services and matching consulting. We provide support in selecting the right product(s) and optimising processes, all the way up to designing and commissioning complete installations.

We offer customer proximity in every sense of the term. We are never far away from our customers, no matter where in the world they are located, and speak their language. But every market is different. Whether automotive, medical or consumer - we also understand the respective industry, including its special characteristics and processes.

 . 1
 4

WE COMBINE EXPERTISE WITH SOLUTIONS AND SOLUTIONS WITH MARKETS NO MATTER WHERE

We are represented worldwide, wherever our customers need us. We can be on site quickly thanks to our network of subsidiaries and offices, as well as our own service and support teams. Regional inventories at dedicated logistics hubs allow us to cater to local requirements quickly and effectively. Our subsidiaries also offer maximum mobility so that we can react to specific market requirements flexibly. Yet even with maximum flexibility and adaptability, one thing always remains the same: at its heart, WEISS is always WEISS.

FIXED-STATION ROTARY INDEXING TABLES

TC ROTARY INDEXING TABLE: RELIABILITY FOR A LIFETIME

EXTENDED WARRANTY

Using our rotary table control system minimises brake wear. This makes the rotary indexing table virtually maintenance-free throughout its entire service life. And using this control system also extends the warranty to four years.

Custom machine for an automotive supplier. The assembly of sealing rings for injection pumps requires maximum precision. The TC 150 rotary indexing table with matched rotating plate delivers this.

One of the most reliable and robust rotary indexing tables available worldwide. Your most popular partner in the field of automation technology. Extremely long service life combined with impressively fast switching. Now in its third generation. Robust rotary indexing table with smooth, jerk and impact-free running and extremely long service life. When using a WEISS rotary table control system, we extend the warranty from one to four years.

ADVANTAGES

- Powerful upright centre part

- Large central bore and opening in the housing for media feed-through on models TC0120 to TC0320

Plate gasket with soiling lip

- Precise, high-load plate bearing
- Cam rollers mounted on needle bearings
- Grey iron housing
- Hardened plates, soft mounting surface

EWR electronic wear compensation
Extremely high precision which always comes with an approval certificate.

The TC is one of the most reliable and robust rotary indexing tables available worldwide. Our roller cam drives are dimensioned as large as possible. And the full length of the cams is used here.

The fastest switching times and an extremely long service life - we achieve this with high-precision drive cams made by our in-house manufacturing department.

DELIVERS WHAT IT PROMISES THAT'S A PROMISE.

general information on the model range

- TC rotary indexing tables can be operated clockwise, anti-clockwise and also in reversing mode.
- The drive can be swung downward. You can do the conversion work yourself.
- The TC rotary indexing tables are "lubricated for life"!
- The maximum switching frequency is up to 220 cycles per minute, depending on the size, the system's mass moment of inertia and the angle of rotation.

All TC rotary indexing tables are equipped with asynchronous brake motors. The size of the motors is optimally matched to the respective rotary indexing table configuration, so the drive can never damage the rotary indexing table.

- The maximum stated radial force and torque of the stationary central section and the output flange refer only to the rotary indexing table.
- When determining the maximum actual load of the overall system, the influence of the plate material and the plate attachment means must also be taken into account.
- We would be happy to advise and support you in dimensioning your overall system.
- Note on indexing times (TC 120-TC500): The actual measured rotation time (from the start signal to the electrical in-position signal) comprises the calculated rotation motion time given in the tables and type-related delays. Electrical signal processing times, as well as setting up and optimising the ideal start position represent an important part.

OPTIMISED BEARINGS

To achieve maximum quality and reliability, even when under load, all roller bearings run in an oil bath and the plate cam rollers are mounted on needle bearings.

GENTLE MOVEMENTS

Thanks to the cam profile with modified sinoide, we are able to achieve very gentle and smooth movements. This is the prerequisite for the fastest indexing times and a long service life.

LATERAL INSIDE/DP 1

LATERAL INSIDE
MOTOR ON CAM SIDE/DP 5

BELOW INSIDE LONG DRIVE HOUSING / DP 7

LATERAL OUTSIDE/DP 2

BELOW OUTSIDE/DP 4

LATERAL OUTSIDE LONG DRIVE HOUSING / DP 6

BELOW OUTSIDE LONG DRIVE HOUSING / DP 8

VERSIONS: MOUNTING POSITION

STANDARD / MP 1

OVERHEAD/MP 2

VERTICAL, DRIVE ON RIGHT/MP 3

VERTICAL, DRIVE AT BASE/MP 4

OPTIONS

If necessary, the stationary central section can be raised 5 mm or 10 mm .

- All sizes in the TC model range can optionally be equipped with a DRIVE-CLiQ absolute encoder.

In connection with the new 2.1 version of the EF2 control system software, the rotary encoder offers the following options:
" Cam switching mechanism: 16 user-programmable electronic cams allow early triggering of process actuators or help reduce the cycle time with load-ing/unloading axes
" Segment detection: The index of the current nest is reflected in the locking position on the fieldbus or, where applicable, digital I/Os. This eliminates the need for retrofit equipment to determine the current position of the component nests on the rotating plate.

- Standard colour: RAL7035 (other colours available on request)
- Please get in touch with us if you are looking for a solution for cleanroom applications.

TC 120G

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 600 mm
Custom option for TC0120T: screw-on mounting from above (please request drawing)

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision ${ }^{*}:$	Indexing 2-10: $90 \operatorname{arcsec}\left(\pm 45^{\prime \prime}\right)$ Indexing 12-20: $110 \operatorname{arcsec}\left(\pm 55^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 120 \mathrm{~mm}) 0.02 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.02 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at $\emptyset 120 \mathrm{~mm}) 0.04 \mathrm{~mm}$
\mathbf{m}	Total weight, including motor:	22 kg

LOAD DATA (for the stationary central part)
Due to the necessary layout of the drilling pattern, the stationary central section should only be used for attach-ing sensor technology or similar small components.

Combined loads and permitted process forces only after inspection by WEISS
LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	120 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	200 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	3300 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	1500 N

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level									2-stage		
		S	a		b	C	d	e	f	g	h	i	j
2	$\mathbf{J}_{\text {2 Max }}$	-	-		-	0.06	0.1	0.174	0.285	0.505	1.15	2.03	4.94
	t_{i}	-	-		-	0.41	0.51	0.63	0.78	0.99	1.42	1.81	2.66
4	$\mathbf{J}_{\text {2 Max }}$	-	0.1	*	0.19	0.29	0.47	0.67	1.25	1.95	5.11	8.95	19.5
	t_{i}	-	0.24	*	0.31	0.37	0.46	0.57	0.70	0.89	1.28	1.63	2.39
5	$\mathrm{J}_{2 \text { Max }}$	-	0.16	*	0.33	0.5	0.808	1.05	1.95	3	8.7	14.1	30.5
	t_{i}	-	0.24	*	0.31	0.37	0.46	0.57	0.70	0.89	1.28	1.63	2.39
6	$\mathrm{J}_{2 \text { Max }}$	0.136	0.23	*	0.408	0.62	1	1.5	2.70	4.4	10.7	18.8	44
	t_{i}	0.21	0.24	*	0.31	0.37	0.46	0.57	0.70	0.89	1.28	1.63	2.39
8	$\mathbf{J}_{\text {2 Max }}$	0.248	0.41	*	0.85	1.28	2.07	2.7	5	7.8	21.4	34.9	75.5
	t_{i}	0.21	0.24	*	0.31	0.37	0.46	0.57	0.70	0.89	1.28	1.63	2.39
10	$\mathrm{J}_{2 \text { Max }}$	0.35	0.57	*	1	1.51	2.44	4.08	6.55	10.7	21.8	35.5	76.8
	t_{i}	0.21	0.24	*	0.31	0.37	0.46	0.57	0.70	0.89	1.28	1.63	2.39
12	$\mathrm{J}_{2 \text { Max }}$	-	-		-	-	0.47 *	0.67	1.25	1.95	5.08	8.9	19.6
	t_{i}	-	-		-	-	0.22 *	0.27	0.34	0.43	0.61	0.78	1.15
16	J_{v}	-	-		-	-	0.55 *	0.92	1.49	2.6	5.9	10.3	25.2
	t_{i}	-	-		-	-	0.22 *	0.27	0.34	0.43	0.61	0.78	1.15
20	$\mathrm{J}_{\text {2 Max }}$	-	-		-	-	0.86 *	1.44	2.32	4.06	9.2	16.1	35.5
	t_{i}	-	-		-	-	0.22 *	0.27	0.34	0.43	0.61	0.78	1.15

$\mathbf{J}_{\mathbf{2} \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table (see also the note on page 17).
*EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for speed levels: h, i, j (2-stage)

Max. centre line deviation between stationary centre section and dial: $\pm 180^{\prime \prime}$
Max. centre line deviation between dial and indexer housing: ± 120 "
Note: Please ensure motor and brake are accessible for servicing!

TC 150T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 800 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-12: $60 \operatorname{arcsec}\left(\pm 30^{\prime \prime}\right)$ Indexing 16-24: $90 \mathrm{arcsec}\left(\pm 45^{\prime \prime}\right)$
\mathbf{A}	Axial run-out of the drive flange:	(at Ø 150 mm$) 0.01 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.01 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at $\emptyset 150 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{m}	Total weight, including motor:	24 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	80 mm

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	140 Nm
$\mathbf{M}_{\mathbf{T S P}}$	Permitted tilting moment:	200 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	3500 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	2500 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	150 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	5500 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	6000 N

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level									2-stage		
		s	a		b	c	d	e	f	g	h	i	i
2	$\mathrm{J}_{2 \text { max }}$	-	-		-	0.09	0.149	0.255	0.415	0.73	1.67	2.93	7.12
	t_{i}	-	-		-	0.43	0.53	0.66	0.81	1.03	1.47	1.88	2.76
3	$\mathrm{J}_{\text {M Max }}$	-	-		-	0.14	0.23	0.39	0.63	1.1	2.53	4.43	10.7
	t_{i}	-	-		-	0.43	0.53	0.66	0.81	1.03	1.47	1.88	2.76
4	$\mathrm{J}_{2 \text { Max }}$	-	0.11	*	0.23	0.37	0.59	0.75	1.4	2.17	6.4	11.3	26.4
	t_{i}	-	0.25	*	0.32	0.39	0.47	0.59	0.73	0.93	1.33	1.69	2.49
6	$\mathrm{J}_{2 \text { max }}$	0.155 *	0.26	*	0.53	0.8	1.29	1.69	3.15	4.9	13.9	24.3	59
	t_{i}	0.21 *	0.25	*	0.32	0.39	0.47	0.59	0.73	0.93	1.33	1.69	2.49
8	$\mathrm{J}_{2 \text { Max }}$	0.28	0.46	*	0.96	1.62	2.61	3.02	5.61	8.71	25.3	48.8	105
	t_{i}	0.21 *	0.25	*	0.32	0.39	0.47	0.59	0.73	0.93	1.33	1.69	2.49
10	$\mathrm{J}_{\text {M Max }}$	0.44 *	0.72	*	1.42	2.14	3.45	4.72	8.80	13.5	36.8	61	132
	t_{i}	0.21 *	0.25	*	0.32	0.39	0.47	0.59	0.73	0.93	1.33	1.69	2.49
12	$\mathrm{J}_{\text {M Max }}$	0.64 *	1.04	*	1.82	2.75	4.42	6.8	11.9	19.8	45.2	73.4	158
	t_{i}	0.21 *	0.25	*	0.32	0.39	0.47	0.59	0.73	0.93	1.33	1.69	2.49
16	J_{v}	-	-		-	0.55	0.88	1.34	2.4	3.9	9.5	16.7	40.6
	t_{i}	-	-		-	0.19	0.23	0.29	0.35	0.45	0.64	0.81	1.20
20	J_{v}	-	-		-	0.69	1.11	1.86	3.01	5.26	11.95	20.9	50.7
	t_{i}	-	-		-	0.19	0.23	0.29	0.35	0.45	0.64	0.81	1.20
24	$\mathrm{J}_{2_{\text {max }}}$	-	-		-	0.83 *	1.33 *	2.24	3.61	6.3	14.35	25.1	60.90
	t_{i}	-	-		-	0.19 *	0.23 *	0.29	0.35	0.45	0.64	0.81	1.20

$\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table (see also the note on page 17).
*EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for speed levels: h, i, j (2-stage)

Max. centre line deviation between stationary centre section and dial: $\pm 180^{\prime \prime}$
Max. centre line deviation between dial and indexer housing: ± 120 "
Note: Please ensure motor and brake are accessible for servicing!

TC 220 T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1100 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-12: $40 \operatorname{arcsec}\left(\pm 20^{\prime \prime}\right)$ Indexing 16-24: $60 \mathrm{arcsec}\left(\pm 30^{\prime \prime}\right)$ Indexing 30-36: 80 arcsec ($\left.\pm 40^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at Ø 220 mm$) 0.01 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.01 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at Ø 220 mm) 0.03 mm
\mathbf{m}	Total weight, including motor:	44 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	96 mm

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	145 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	300 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	5000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	4000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	200 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	700 Nm
$\mathbf{F}_{2 \text { A dyn }}$	Permitted dynamic axial force:	$\mathbf{7 5 0 0} \mathrm{N}$
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	8000 N

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level											2-stage		
		b	c	d	e	f	g	h	1	j	k	1	m	n	0
2	$\mathbf{J}_{\text {2 Max }}$	-	-	0.15	0.36	0.58	0.76	1.3	2.02	3.55	9.6	13.30	35.6	96	167
	t_{i}	-	-	0.35	0.50	0.60	0.67	0.84	1.02	1.30	1.99	2.30	3.53	5.42	6.91
3	$\mathrm{J}_{\text {2 Max }}$	-	0.18*	0.3	0.69	1.09	1.43	2.41	3.73	6.54	17.65	24.55	65.5	176	308
	t_{i}	-	0.29*	0.35	0.50	0.60	0.67	0.84	1.02	1.30	1.99	2.30	3.53	5.42	6.91
4	$\mathrm{J}_{\text {2 Max }}$	0.12*	0.24*	0.46	1.34	2.38	3.36	6.6	11.6	17.3	31.5	48.5	144	340	552
	t_{i}	0.22*	0.26*	0.32	0.45	0.54	0.61	0.76	0.92	1.17	1.80	2.07	3.17	4.88	6.22
6	$\mathrm{J}_{\text {2 Max }}$	0.31*	0.58*	1.06	3.05	5.4	7.6	14.9	24.9	26	70.9	109	324	765	1240
	t_{i}	0.22*	0.26*	0.32	0.45	0.54	0.61	0.76	0.92	1.17	1.80	2.07	3.17	4.88	6.22
8	$\mathrm{J}_{2 \text { Max }}$	0.58*	1.06*	1.92	5.44	9.63	13.55	19.05	33.5	46.2	126	195	495	1170	1900
	t_{i}	0.22*	0.26*	0.32	0.45	0.54	0.61	0.76	0.92	1.17	1.80	2.07	3.17	4.88	6.22
10	$\mathrm{J}_{2 \text { Max }}$	0.92*	1.67*	3.01	8.48	14.55	18.88	29.8	48.7	72	192	257	600	1420	2300
	t_{i}	0.22*	0.26*	0.32	0.45	0.54	0.61	0.76	0.92	1.17	1.80	2.07	3.17	4.88	6.22
12	$\mathrm{J}_{\text {2 Max }}$	1.34*	2.41*	4.35	10.7	16	20.1	31.5	45.9	74.6	176.4	235.2	551	1300	2110
	t_{i}	0.22*	0.26*	0.32	0.45	0.54	0.61	0.76	0.92	1.17	1.80	2.07	3.17	4.88	6.22
16	J_{v}	-	-	-	2*	3.1 *	4.03	6.74	9.95	18.2	49.1	68.30	182	490	855
	t_{i}	-	-	-	0.22*	0.26*	0.29	0.37	0.44	0.56	0.86	1.00	1.53	2.35	2.99
20	J_{v}	-	-	-	3.05*	4.72*	6.14	10.2	15.6	27.7	68.1	90.9	213	500	815
	t_{i}	-	-	-	0.22*	0.26*	0.29	0.37	0.44	0.56	0.86	1.00	1.53	2.35	2.99
24	J_{v}	-	-	-	3.67*	5.68*	7.38*	12.35	19	33.3	81.7	109	255	600	980
	t_{i}	-	-	-	0.22*	0.26*	0.29*	0.37	0.44	0.56	0.86	1.00	1.53	2.35	2.99
30	J_{v}	-	-	-	-	-	3.59*	6.01*	9.29*	16.2	43.7	60.9	162	420	680
	t_{i}	-	-	-	-	-	0.19*	0.24*	0.29*	0.37	0.57	0.65	1.00	1.54	1.96
36	$\mathrm{J}_{\text {2 Max }}$	-	-	-	-	-	4.32*	7.23*	11.15*	19.5	52	69.5	163	385	625
	t_{i}	-	-	-	-	-	0.19*	0.24*	0.29*	0.37	0.57	0.65	1.00	1.54	1.96

Using the BG 71 motor					
b	c	d	e	f	g
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
0.19*	0.37*	0.69	1.97	3.5	4.61
0.22*	0.26*	0.32	0.45	0.54	0.61
0.48*	0.87*	1.59	4.53	7.45	-
0.22*	0.26*	0.32	0.45	0.54	-
0.87 *	1.58*	2.85	6.92	10.7	-
0.22*	0.26*	0.32	0.45	0.54	-
1.37*	2.48*	4.24	9.4	-	-
0.22*	0.26*	0.32	0.45	-	-
1.96*	3.08*	-	-	-	-
0.22*	0.26*	-	-	-	-

$\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table.
(see also the note on page 17).
*EF2 - Control recommended to minimise brake wear (see page 48)
The values in the second table apply for the maximum permitted mass moment of inertia when using the size 71 motor

DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for motor BG71
** Dimensions for speed levels: m, n, o (2-stage)
Max. centre line deviation between stationary centre section and dial: ± 150 "
Max. centre line deviation between dial and indexer housing: ± 100 "
Note: Please ensure motor and brake are accessible for servicing!

TC 320 T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1400 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-12: $40 \operatorname{arcsec}\left(\pm 20^{\prime \prime}\right)$ Indexing 16-24: $60 \mathrm{arcsec}\left(\pm 30^{\prime \prime}\right)$ Indexing 30-36: $70 \mathrm{arcsec}\left(\pm 35^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 320 \mathrm{~mm}) 0.01 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.01 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at $\emptyset 320 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{m}	Total weight, including motor:	112 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	150 mm

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	800 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	1800 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	18000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	10000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{\mathbf{2 s t a t}}$	Static torque:	600 Nm
$\mathbf{M}_{2 \text { dyn }}$	Permitted dynamic tilting moment:	2250 Nm
$\mathbf{F}_{2 \mathrm{Adyn}}$	Permitted dynamic axial force:	15000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	13000 N

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level															2-stage		
		s	a	b	c	d	e	f	g	h	i	j	k	I	m	n	0	p	9
2	$\mathbf{J}_{\text {2 Max }}$	-	-	-	-	-	2.67	3.51	4.3	6.27	9.79	18	27.3	36.6	72	95.5	106	143	214
	t_{i}	-	-	-	-	-	0.61	0.69	0.75	0.89	1.06	1.37	1.64	2.07	2.64	3.04	3.3	3.72	4.55
3	$\mathrm{J}_{\text {2 Max }}$	-	-	-	-	3.15	4.26	5.58	6.81	10.3	15.3	28.1	42.6	72.8	127	175	212	280	446
	t_{i}	-	-	-	-	0.54	0.61	0.69	0.75	0.89	1.06	1.37	1.64	2.07	2.64	3.04	3.3	3.72	4.55
4	$\mathrm{J}_{\text {2 Max }}$	1.62 *	2.95 *	4.59	5.6	7.33	9.83	11.8	15.2	23.4	31.8	58.1	83.4	109	215	285	318	427	640
	t_{i}	0.3 *	0.36 *	0.42	0.45	0.51	0.57	0.64	0.7	0.83	0.99	1.28	1.53	1.93	2.46	2.83	3.08	3.47	4.25
6	$\mathbf{J}_{\text {2 Max }}$	3.9 *	6.89 *	9.57	11.6	15.1	20.2	26.2	31.9	48	71.1	129	187	246	485	641	716	961	1440
	t_{i}	0.3 *	0.36 *	0.42	0.45	0.51	0.57	0.64	0.7	0.83	0.99	1.28	1.53	1.93	2.46	2.83	3.08	3.47	4.25
8	$\mathrm{J}_{\text {2 Max }}$	7.1 *	12.4 *	18.97	24.2	31.4	42	54.4	66.1	98.4	128	233	334	439	862	1140	1270	1700	2560
	t_{i}	0.3	0.36 *	0.42	0.45	0.51	0.57	0.64	0.7	0.83	0.99	1.28	1.53	1.93	2.46	2.83	3.08	3.47	4.25
10	$\mathrm{J}_{\text {2 Max }}$	10 *	17.19*	23.7	28.8	37.5	50	64.8	78.7	118	174	318	456	615	1170	1550	1780	2330	3500
	t_{i}	0.29 *	0.35 *	0.4	0.44	0.49	0.55	0.62	0.67	0.8	0.95	1.24	1.48	1.87	2.38	2.73	2.97	3.35	4.1
12	$\mathrm{J}_{\text {2 Max }}$	13.5 *	20.7 *	28.6	34.7	45.1	60.1	77.9	94.7	142	210	382	547	871	1410	1860	2200	2800	4200
	t_{i}	0.29 *	0.35 *	0.4	0.44	0.49	0.55	0.62	0.67	0.8	0.95	1.24	1.48	1.87	2.38	2.73	2.97	3.35	4.1
16	J_{v}	-	-	-	-	8.15*	10.9*	14.2	17.2	26	38.5	70.4	105	138	271	359	400	538	806
	t_{i}	-	-	-	-	0.22 *	0.25 *	0.28	0.3	0.36	0.42	0.55	0.66	0.83	1.06	1.21	1.32	1.49	1.82
20	J_{v}	-	-	-	-	12.29*	16.4*	21.3	25.9	37.7	57.7	105	159	215	424	561	626	841	1260
	t_{i}	-	-	-	-	0.22 *	0.25 *	0.28	0.3	0.36	0.42	0.55	0.66	0.83	1.06	1.21	1.32	1.49	1.82
24	J_{v}	-	-	-	-	-	17.24 *	22.3	27.2	40.9	60.5	110	167	285	498	686	872	1100	1650
	t_{i}	-	-	-	-	-	0.25*	0.28	0.3	0.36	0.42	0.55	0.66	0.83	1.06	1.21	1.32	1.49	1.82
30	J_{v}	-	-	-	-	-	-	-	14.16*	21.3*	31.6	57.7	87.5	143	260	359	418	560	840
	t_{i}	-	-	-	-	-	-	-	0.2 *	0.24*	0.28	0.37	0.44	0.55	0.7	0.81	0.88	0.99	1.21
36	$\mathrm{J}_{\text {2 Max }}$	-	-	-	-	-	-	-	17.03*	25.6*	37.9	69.3	103	179	308	431	581	738	1100
	t_{i}	-	-	-	-	-	-	-	0.2 *	0.24 *	0.28	0.37	0.44	0.55	0.7	0.81	0.88	0.99	1.21

[^0]
DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for motor BG80
* Dimensions for speed levels: o, p, q (2-stage)

Max. centre line deviation between stationary centre section and dial: $\pm 130^{\prime \prime}$
Max. centre line deviation between dial and indexer housing: $\pm 80^{\prime \prime}$
Note: Please ensure motor and brake are accessible for servicing!

TC 500T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 2000 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-12: $30 \mathrm{arcsec}\left(\pm 15^{\prime \prime}\right)$ Indexing 16-48: $40 \mathrm{arcsec}\left(\pm 20^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at Ø 500 mm$) 0.015 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.015 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at Ø 500 mm) 0.03 mm
\mathbf{m}	Total weight, including motor:	305 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	242 mm

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\text {SP }}$	Permitted torque:	800 Nm
$\mathbf{M}_{\text {T SP }}$	Permitted tilting moment:	2500 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	25000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	15000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	1000 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	6000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	25000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	20000 N

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

$\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table (see also the note on page 17).
*EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for motor BG90
** Dimensions for speed levels: o, p, q (2-stage)
Max. centre line deviation between stationary centre section and dial: $\pm 75^{\prime \prime}$
Max. centre line deviation between dial and indexer housing: ± 55 "
Note: Please ensure motor and brake are accessible for servicing!

TC 700T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 3000 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-12: $24 \operatorname{arcsec}\left(\pm 12^{\prime \prime}\right)$ Indexing 16-60: $32 \mathrm{arcsec}\left(\pm 16^{\prime \prime}\right)$
\mathbf{A}	Axial run-out of the drive flange:	(at $\emptyset 700 \mathrm{~mm}) 0.02 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.02 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at $\emptyset 700 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{m}	Total weight, including motor:	660 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	242 mm

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\text {SP }}$	Permitted torque:	1000 Nm
$\mathbf{M}_{\text {T SP }}$	Permitted tilting moment:	3000 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	30000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	15000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	1400 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	10000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	40000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	27000 N

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level													2-stage	
		s	a	b	c	d	e	f	g	h	1	j	k	I	m	n
2	$\mathrm{J}_{\text {2 Max }}$	-	9	19	37	56.7	104	149	213	335	587	1010	1650	2920	4650	6700
	t_{i}	-	0.69	0.81	0.98	1.14	1.46	1.69	1.96	2.40	3.01	3.84	4.70	6.18	7.37	9.04
3	$\mathrm{J}_{\text {2 Max }}$	-	24	37.6	62.4	93.4	165	239	340	547	927	1620	2590	4850	7320	11700
	t_{i}	-	0.69	0.81	0.98	1.14	1.46	1.69	1.96	2.40	3.01	3.84	4.70	6.18	7.37	9.04
4	$\mathrm{J}_{\text {max }}$	20	36	62	115	169	294	424	601	909	1630	2730	4550	7800	12500	17900
	$\mathrm{t}_{\text {s }}$	0.53	0.62	0.73	0.88	1.03	1.31	1.52	1.76	2.16	2.71	3.45	4.23	5.56	6.64	8.13
6	$\mathrm{J}_{\text {max }}$	53	90	149	233	342	604	845	1190	1910	3230	5640	9020	16900	25300	40300
	$\mathrm{t}_{\text {s }}$	0.53	0.62	0.73	0.88	1.03	1.31	1.52	1.76	2.16	2.71	3.45	4.23	5.56	6.64	8.13
8	$\mathrm{J}_{\text {max }}$	101	166	270	484	702	1200	1720	2430	3650	6560	10900	18300	31200	48800	71500
	$\mathrm{t}_{\text {s }}$	0.53	0.62	0.73	0.88	1.03	1.31	1.52	1.76	2.16	2.71	3.45	4.23	5.56	6.64	8.13
10	$\mathrm{J}_{\text {max }}$	161	263	412	641	900	1630	2280	3220	5150	8670	15100	24200	41800	59500	89500
	$\mathrm{t}_{\text {s }}$	0.53	0.62	0.73	0.88	1.03	1.31	1.52	1.76	2.16	2.71	3.45	4.23	5.56	6.64	8.13
12	$\mathrm{J}_{\text {max }}$	236	360	518	803	1170	2050	2850	4040	6460	10900	19000	29100	50200	71500	107000
	$\mathrm{t}_{\text {s }}$	0.53	0.62	0.73	0.88	1.03	1.31	1.52	1.76	2.16	2.71	3.45	4.23	5.56	6.64	8.13
16	J_{v}	-	-	-	-	195	346	486	688	1100	1850	3250	5210	9760	14600	23400
	t_{i}	-	-	-	-	0.46	0.58	0.67	0.78	0.96	1.20	1.53	1.88	2.47	2.95	3.62
20	J_{v}	-	-	-	-	302	533	747	1050	1690	2850	4980	7960	14900	22400	35400
	t_{i}	-	-	-	-	0.46	0.58	0.67	0.78	0.96	1.20	1.53	1.88	2.47	2.95	3.62
24	J_{v}	-	-	-	-	364	642	898	1270	2030	3430	5990	9570	17900	26800	42400
	t_{i}	-	-	-	-	0.46	0.58	0.67	0.78	0.96	1.20	1.53	1.88	2.47	2.95	3.62
30	J_{v}	-	-	-	-	-	179	252	356	577	978	1710	2740	5130	7710	12300
	t_{i}	-	-	-	-	-	0.39	0.45	0.52	0.64	0.80	1.02	1.25	1.65	1.97	2.41
36	$\mathrm{J}_{2 \text { Max }}$	-	-	-	-	-	216	304	432	694	1170	2040	3280	6160	9250	14700
	t_{i}	-	-	-	-	-	0.39	0.45	0.52	0.64	0.80	1.02	1.25	1.65	1.97	2.41
48	$\mathrm{J}_{2 \text { Max }}$	-	-	-	-	-	291	408	579	930	1570	2740	4390	8240	12300	19700
	t_{i}	-	-	-	-	-	0.39	0.45	0.52	0.64	0.80	1.02	1.25	1.65	1.97	2.41
60	$\mathrm{J}_{\text {2 Max }}$	-	-	-	-	-	250	351	498	800	1350	2360	3780	7100	10600	17000
	t_{i}	-	-	-	-	-	0.39	0.45	0.52	0.64	0.80	1.02	1.25	1.65	1.97	2.41

$\mathbf{J}_{\mathbf{2 M a x}}=\max$ admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table.
EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for motor BG90
** Dimensions for motor BG100
*** Dimensions for speed levels: m, n (2-stage)
Max. centre line deviation between stationary centre section and dial: ± 60 "
Max. centre line deviation between dial and indexer housing: $\pm 40^{\prime \prime}$
Note: Please ensure motor and brake are accessible for servicing!

TC 1000T

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t \mathrm{t}}$: approximately 5000 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision *:	Indexing 2-20: $24 \operatorname{arcsec}\left(\pm 12^{\prime \prime}\right)$ Indexing 24-36: $32 \mathrm{arcsec}\left(\pm 16^{\prime \prime}\right)$
\mathbf{A}	Axial run-out of the drive flange:	(at $\emptyset 1000 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	(at $\emptyset 1000 \mathrm{~mm}) 0.05 \mathrm{~mm}$
\mathbf{m}	Total weight, including motor:	1530 kg
\mathbf{D}	Min. inside diameter of the rotary plate:	522 mm

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\text {SP }}$	Permitted torque:	1800 Nm
$\mathbf{M}_{\mathbf{T S P}}$	Permitted tilting moment:	5000 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	40000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	17000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{T}_{\mathbf{2 s t a t}}$	Static torque:	$\mathbf{2 2 0 0} \mathrm{Nm}$
$\mathbf{M}_{2 \text { Tdyn }}$	Permitted dynamic tilting moment:	13000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	80000 N
$\mathbf{F}_{2 \text { R dyn }}$	Permitted dynamic radial force:	45000 N

* Positioning accuracy can be improved by 10 arcsec on request.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 hz mains frequency)

Indexing		Speed level							2-stage		
		a	b	C	d	e	f	g	h	i	j
2	$\mathrm{J}_{\text {2 Max }}$	108	173	333	695	1130	1930	2820	4910	14900	19700
	t_{i}	1.28	1.50	1.92	2.57	3.15	3.96	5.04	6.18	10.74	12.33
3	$\mathrm{J}_{\text {2 Max }}$	182	280	521	1060	1720	2920	4670	8230	29400	40500
	t_{i}	1.28	1.50	1.92	2.57	3.15	3.96	5.04	6.18	10.74	12.33
4	$\mathrm{J}_{\text {2 Max }}$	406	604	1080	1990	3410	5370	7600	13200	39900	52700
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
6	$\mathrm{J}_{\text {2 Max }}$	807	1180	2100	4170	6680	11200	17100	29700	89900	118000
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
8	$\mathrm{J}_{\text {2 Max }}$	1710	2480	4380	8080	13700	21600	30500	52900	160000	210000
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
10	$\mathrm{J}_{2 \text { Max }}$	2147	3110	5480	10800	17300	28100	35000	64400	207000	273000
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
12	$\mathrm{J}_{\text {2 Max }}$	2585	3750	6590	13000	20800	33700	54800	82400	249000	328000
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
16	J_{v}	3459	5010	8800	17300	27700	45000	73000	109000	332000	437000
	t_{i}	1.15	1.35	1.73	2.32	2.84	3.56	4.54	5.56	9.67	11.10
24	J_{v}	730	1070	1900	3780	6070	10200	17600	28600	98400	129000
	t_{i}	0.51	0.60	0.77	1.03	1.26	1.58	2.02	2.47	4.30	4.93
36	$\mathrm{J}_{\text {2 Max }}$	-	-	1109	2220	3570	6040	10500	16900	60400	83000
	t_{i}	-	-	0.51	0.69	0.84	1.06	1.34	1.65	2.86	3.29

[^1]
DIMENSIONS

If you require subsequent drilling work on the indexing table, please request information on permissible drilling depths. The illustrated rotating plate position corresponds to the basic position of the rotary indexing table (Position when delivered).

* Dimensions for speed levels: h, i, j (2-stage)

Max. centre line deviation between stationary centre section and dial: ± 45 "
Max. centre line deviation between dial and indexer housing: $\pm 35^{\prime \prime}$
Note: Please ensure motor and brake are accessible for servicing!

ROTARY PLATE

We manufacture rotary plates to your specifications from steel aluminium or high-strength aluminium. Particularly when working with aluminium plates (material AIMg4,5Mn F28), we pay
attention to ensuring that the material is free of tension. If desired, the aluminium plates can also be anodised (natural or colour). Steel plates are chemically nickel-plated.

CALCULATION

Nominal indexing precision $= \pm \frac{\pi \times D \times T_{g}}{360 \times 3600}$
$D=$ Pitch circle diameter $\quad 360 \times 3600$
$\mathrm{T}_{\mathrm{g}}=$ Brochure precision

Accuracy of circular run-out for additional plates

Diameter (mm)	Thickness (mm)	Flatness Quality A (mm)	Flatness Quality B (mm)
≤ 600	≥ 20	0.04	0.10
	<20	0.06	0.15
≤ 800	≥ 20	0.06	0.15
	<20	0.07	0.18
≤ 1100	≥ 20	0.07	0.18
	<20	0.08	0.20
≤ 1400	≥ 25	0.08	0.20
	<25	0.10	0.25
≤ 1800	≥ 25	0.10	0.25
	<25	0.20	0.50
≤ 2500	≥ 30	0.15	0.40
	< 30	0.25	0.55

If we machine your additional indexing plate, $\pm 3^{\prime \prime}$ needs to be added to the indexing precision of the rotary indexing table specified in the diagram.

CALCULATION OF THE MOMENT OF MASS INERTIA

Solid body:

```
J=0.5 < rad
or
```



```
r = radius in m
m}=\mathrm{ mass (weight) in kg
Da}=\mathrm{ diameter in m
```

Individual weights (approximation formula):
$J=1.1 \times r_{e}^{2} \times m_{e} \times n$

$r_{e} \quad=$ radius in m
$\mathrm{m}_{\mathrm{e}} \quad=$ mass (weight) in kg
$\mathrm{n} \quad=$ number of individual masses

YOU CAN FIND DETAILED INFORMATION IN THE CHAPTER ENTITLED "INDEXING MACHINE BASES"

CUSTOM EQUIPMENT

Tried-and-tested standard modules form the basis for perfectly matched system solutions. From the design, through the requisite precision and dimensions, all the way up to the colour: customers can select all parameters individually. You receive an acceptance certificate and the confidence of knowing that everything works together perfectly. Take advantage of our complete package for rotary table-based basic machines.

We support you in optimising time, costs and resources when creating your system. You have a single contact and receive everything from a single source, so you do not need to worry about interface problems.

TR

FIXED-STATION ROTARY INDEXING TABLES | TR ROTARY INDEXING RING TABLE

TR ROTARY INDEXING RING TABLE: NEW APPLICATION POSSIBILITIES

THE TR FULL SOLUTION

Tailor-made electrical accessories. Control card, electronic contactor or frequency converter.

OR RATHER A HEAVY DUTY ROTARY TABLE?

Our user programmable CR heavy duty rotary table range is available for heavy loads

Kugler-Womako produces machines for print finishing and the stationery industry. Something genuinely new in the paper industry: rather than standard linear transfer systems, the TR 750 rotary indexing ring table is used.

Rotary indexing ring table with very large central opening, extremely flat design and high parts accuracy. The ring-shaped design allows extra free design space. The rotating aluminium ring can be adjusted to your specifications in terms of diameter and thickness.

ADVANTAGES

- Ring-shaped rotary indexing table with very large central opening
- High level of parts accuracy through locking on the outer edges
- Highly dynamic with smooth acceleration
- Flat, compact design - compatible with our tried and tested machines

Four sizes

Available as a user-programmable NR version (please also see the "Freely programmable rotary tables" section)

Simplest control system, identical to our TC rotary indexing tables

Excellent price-performance

- Appealing design

DRIVE HOUSING INSIDE/DP 1

DRIVE HOUSING BELOW /DP 2

VERSIONS: MOUNTING POSITION

STANDARD / MP 1

VERTICAL DRIVE AT BASE/MP 2
(only possible for model TR 0750A)

GENERAL INFORMATION ON THE MODEL RANGE

- TR rotary indexing tables can be operated clockwise, anti-clockwise and also in reversing mode.
. The TR rotary indexing rings are "lubricated for life"!
- All TR rotary indexing tables are equipped with asynchronous brake motors. The size of the motors is optimally matched to the respective rotary indexing table configuration, so the drive can never damage the rotary indexing ring.
. The maximum switching frequency is up to 120 cycles per minute, depending on the system's mass moment of inertia and the angle of rotation.
- Note on indexing times (TC 120-TC500): The actual measured rotation time (from the start signal to the electrical inposition signal) comprises the calculated rotation motion time given in the tables and type-related delays. Electrical signal processing times, as well as setting up and optimising the ideal start position represent an important part.

OPTIONS

Possible installation location: vertical rotary axis with output flange at the top

- Custom installation location, only possible for the TR0750A: horizontal rotary axis with cam housing at the base
- Sizes TR0750A to TR1500A can optionally be equipped with a DRIVE-CLiQ absolute encoder.
- In connection with the new 2.1 version of the EF2 control system software, the rotary encoder offers the following options:
" Cam switching mechanism: 16 user-programmable electronic cams allow early triggering of process actuators or help reduce the cycle time with load-ing/unloading axes
" Segment detection: The index of the current nest is reflected in the locking position on the fieldbus or, where applicable, digital I/Os. This eliminates the need for retrofit equipment to determine the current position of the component nests on the rotating plate.
- Standard colour: RAL7035 (other colours available on request)

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 1500 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision:	36 arcsec ($\left.\pm 18{ }^{\prime \prime}\right)$
\mathbf{A}	Axial run-out of the drive flange:	(at $\emptyset 635 \mathrm{~mm}) 0.05 \mathrm{~mm}$
\mathbf{A}	Axial run-out, including the rotary ring:	(at $\emptyset 750 \mathrm{~mm}) 0.07 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.05 mm
\mathbf{m}	Total weight, including motor:	230 kg

LOAD DATA (for the output flange)

$\mathbf{T}_{\mathbf{2 s t a t}}$	Static torque:	$\mathbf{2 5 0 0 \mathrm { Nm }}$
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	750 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	$\mathbf{7 0 0 0} \mathrm{N}$
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	7000 N

Combined loads and permitted process forces only after inspection by WEISS

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 Hz mains frequency)

$\mathbf{J}_{2_{\text {Max }}}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. 80-130 ms longer than the value specified in the table (see also the note on page 17). *EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

The position shown for the output flange with rotary ring corresponds to the home position (delivery state). The additional rotating ring is not included in the standard delivery scope and is subject to an extra charge. It is calculated separately as per your details.

[^2]
TR 1100A

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately. 2200 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision:	$36 \operatorname{arcsec}(\pm 18 ")$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 945 \mathrm{~mm}) 0.06 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 1100 \mathrm{~mm}) 0.07 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.04 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.06 mm
\mathbf{m}	Total weight, including motor:	310 kg

LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	3500 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	2500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	12000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	12000 N

Combined loads and permitted process forces only after inspection by WEISS.

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 Hz mains frequency)

Indexing		Speed level									2-stage		
		s		a		b	c	d	e	f	g	h	i
4	$\mathrm{J}_{2 \text { Max }}$	-		-		11	19	41	57	60	180	295	445
	t_{i}	-		-		0.53	0.59	0.82	0.90	1.15	1.41	2.16	2.75
6	$\mathrm{J}_{\text {2 Max }}$	-		13		34	43	92	114	190	290	675	1010
	t_{i}	-		0.42		0.53	0.59	0.82	0.90	1.15	1.41	2.16	2.75
8	$\mathbf{J}_{\text {2 Max }}$	-		26	*	48	61	126	155	255	385	925	1510
	t_{i}	-		0.42	*	0.53	0.59	0.82	0.90	1.15	1.41	2.16	2.75
10	$\mathbf{J}_{\text {2 Max }}$	-		35	*	62	78	160	195	325	485	1160	1890
	t_{i}	-		0.39	*	0.51	0.56	0.78	0.86	1.09	1.33	2.05	2.61
12	$\mathbf{J}_{\text {2 Max }}$	21	*	62	*	116	143	260	350	495	860	2045	3325
	t_{i}	0.29		0.39	*	0.51	0.56	0.78	0.86	1.09	1.33	2.05	2.61
16	$\mathrm{J}_{2 \text { Max }}$	38	*	86	*	146	180	355	435	715	1070	2540	4125
	t_{i}	0.28	*	0.38	*	0.49	0.54	0.75	0.83	1.05	1.29	1.98	2.52
20	$\mathbf{J}_{2 \text { Max }}$	57	*	109	*	185	225	450	550	895	1340	3175	5160
	t_{i}	0.28	*	0.38	*	0.49	0.54	0.75	0.83	1.05	1.29	1.98	2.52
24	J_{v}	65	*	135	*	225	275	540	660	1075	1605	3810	6190
	t_{i}	0.28	*	0.38	*	0.49	0.54	0.75	0.83	1.05	1.29	1.98	2.52
30	$\mathrm{J}_{\text {2 Max }}$	90	*	170	*	280	345	675	825	1345	2010	4765	7740
	t_{i}	0.28	*	0.38	*	0.49	0.54	0.75	0.83	1.05	1.29	1.98	2.52
36	$\mathbf{J}_{2 \text { Max }}$	110	*	205	*	340	415	815	995	1620	2415	5720	9290
	t_{i}	0.28	*	0.38	*	0.49	0.54	0.75	0.83	1.05	1.29	1.98	2.52

 measured from the start signal to the electric position indication is approx. $80-130 \mathrm{~ms}$ longer than the value specified in the table.
*EF2 - Control recommended to minimise brake wear (see page 48).

DIMENSIONS

The position shown for the output flange with rotary ring corresponds to the home position (delivery state). The additional rotating ring is not included in the standard delivery scope and is subject to an extra charge. It is calculated separately as per your details.

Customer-specific plate design
(part of the functionality of TR)
Never make a through hole within the min./max. diameter of the rotating ring

[^3]
TR 1500A

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 3000 mm

TECHNICAL DATA

\mathbf{U}	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
\mathbf{f}	Frequency:	50 Hz
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15{ }^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1275 \mathrm{~mm}) 0.08 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 1500 \mathrm{~mm}) 0.1 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.04 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
\mathbf{m}	Total weight, including motor:	$\mathbf{4 0 0 \mathrm { kg }}$

LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	5000 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	3200 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	16000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	16000 N

Combined loads and permitted process forces only after inspection by WEISS.

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 Hz mains frequency)

[^4]
DIMENSIONS

The position shown for the output flange with rotary ring corresponds to the home position (delivery state). The additional rotating ring is not included in the standard delivery scope and is subject to an extra charge. It is calculated separately as per your details.

* Dimensions for motor BG 90
** Dimensions for motor BG 71 (2-stage)

TR 2200A

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t \mathrm{t}}$: approximately 4400 mm

TECHNICAL DATA

U	Voltage (custom voltages available on request):	$230 / 400 \mathrm{~V}$
f	Frequency:	50 Hz
	Indexing precision*:	$24 \operatorname{arcsec}\left(\pm 12^{\prime \prime}\right)$
A_{r}	Axial run-out of the drive flange:	(at Ø 1990 mm) 0.08 mm
A_{r}	Axial run-out, including the rotary ring:	(at Ø 2200 mm) 0.15 mm
Cr	Concentricity of the output flange:	0.05 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
m	Total weight, including motor:	950 kg

LOAD DATA (for the output flange)

$\mathbf{T}_{2 \text { stat }}$	Static torque:	15000 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	4500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	30000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	30000 N

Combined loads and permitted process forces only after inspection by WEISS.

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD TABLE 50 Hz (On request: higher loads / custom indexing and switching times for 60 Hz mains frequency)

Indexin		Speed level							
		a		b	c	d	e	f	g
14	$\mathbf{J}_{\text {2 Max }}$	-		-	-	525	720	1010	2400
14	t_{i}	-		-	-	0.77	0.86	0.97	1.48
16	$\mathrm{J}_{2 \text { Max }}$	-		-	420	995	1030	1640	3075
16	t_{i}	-		-	0.62	0.77	0.86	0.97	1.48
18	$\mathbf{J}_{\text {2 Max }}$	-		-	600	1325	1370	2140	3955
18	t_{i}	-		-	0.62	0.77	0.86	0.97	1.48
20	$\mathbf{J}_{\text {2 Max }}$	-		511	797	1550	1750	2670	4945
20	t_{i}	-		0.50	0.62	0.77	0.86	0.97	1.48
24	$\mathrm{J}_{2 \text { Max }}$	-		665	1180	1805	2455	3255	7230
24	t_{i}	-		0.50	0.62	0.77	0.86	0.97	1.48
30	$\mathbf{J}_{\text {2 Max }}$	-		707	1245	2010	2580	3420	8240
30	t_{i}	-		0.46	0.57	0.70	0.78	0.89	1.36
36	$\mathbf{J}_{2 \text { Max }}$	465	*	900	1545	2465	3135	4155	9940
36	t_{i}	0.37	*	0.46	0.57	0.70	0.78	0.89	1.36
48	J_{v}	762	*	1281	2140	3370	4165	5625	13335
48	t_{i}	0.37	*	0.46	0.57	0.70	0.78	0.89	1.36

[^5]
DIMENSIONS

The shown position of the rotating ring corresponds to the home position (state of delivery) with motor size BG100. Additional indexing plates are not included in the standard delivery scope and are subject to an extra charge. They are calculated separately as per your details.

Customer-specific plate design
(part of the functionality of TR)

EF2

FIXED-STATION ROTARY INDEXING TABLES | EF2 ROTARY TABLE CONTROL SYSTEM

ADVANTAGES

The EF2 rotary table control system enables fast and convenient control of rotary indexing tables of all sizes belonging to the TC and TR series.

- Intuitive, web-based user interface for faster commissioning
- No brake wear, soft start-up from intermediate positions is gentle on gearing
- Increased performance through fully automatic optimisation cycle
- Remote support and remote diagnostics options
- Worldwide use thanks to various mains standards
- Compact hardware (all-in-one)
- Fieldbus connection: Profibus and Profinet
- Interface: Digital I/O
- Integrated SIL2 safety function
- Additional SIL3 measures possible
- Watchdog mechanism

BLOCK DIAGRAM
 to be optimised and the current process status in all nests to be reliably detected.

DIMENSIONS

FSA size (EF2037 to EF2220)

A = Ventilation clearance
B = Brake resistance
C = Shielding plate

FSB size (EF2300)

FIXED-STATION ROTARY INDEXING TABLES | TS 004E CONTROL CARD

ADVANTAGES

Instant start-up thanks to user-friendly push buttons on front panel

Easy to optimize the cycle time of the indexer

- Motor protection through cycle time monitoring

Allows failure analysis by telephone
EWR: Considerable extension of the service life of the brake by reduction of the motor speed before braking

ABMESSUNGEN

Control card:
Europecard $100 \times 160 \mathrm{~mm}$
Front plate $3 \mathrm{HE} / 8 \mathrm{TE}$
Multipoint plug, 64-pin in
accordance with DIN 41612 Type B
PCB holder: $220 \times 130 \times 50 \mathrm{~mm}$

- Housing for rear wall mounting: $235 \times 135 \times 67 \mathrm{~mm}$
- Housing for rail mounting: $245 \times 135 \times 67 \mathrm{~mm}$

Housing for front panel installation: $235 \times 135 \times 67 \mathrm{~mm}$
Installation opening: $136 \times 68 \mathrm{~mm}$

INSTALLATION OPTIONS

- In a 19" rack (in conjunction with terminal PCB TS 004 K1)
- In the PCB holder
- In the protective housing

BLOCK DIAGRAM

FREELY PROGRAMMABLE ROTARY TABLES

NC ROTARY TABLE: USER-PROGRAMMABLE AND ROBUST

OPTIMISED BEARINGS

To achieve maximum quality and reliability, even when under load, all roller bearings run in an oil bath and the plate cam rollers are mounted on needle bearings.

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

Custom machine for an automotive supplier. A user-programmable NC320 represents the heart of the system. It brings the seal and springs together and forwards the components to the other tables.

The NC combines robustness and durability with the advantages of a freely programmable rotary table offering a high level of torque. The NC differs from the TC range through its use of a brushless AC servo motor drive. In addition, the drive curve has a constant rise. The NC-T is capable of positioning large loads dynamically and precisely at freely selectable angles.

ADVANTAGES

User-programmable
High level of torque
Absolute encoder (option)
High-precision, rigid rotating plate bearing mounting

Various sizes

Large central bore and opening in the housing for media feed-through

Mechanical interfaces for connecting customer-specific servo motors
High degree of synchronism
High degree of repeat accuracy

LATERAL INSIDE/DP 1

LATERAL INSIDE
MOTOR ON CAM SIDE/DP 5

BELOW INSIDE LONG DRIVE HOUSING / DP 7

LATERAL OUTSIDE/DP 2

BELOW OUTSIDE/DP 4

LATERAL OUTSIDE LONG DRIVE HOUSING / DP 6

BELOW OUTSIDE LONG DRIVE HOUSING / DP 8

VERSIONS: MOUNTING POSITION

STANDARD / MP 1

VERTICAL, DRIVE ON RIGHT/MP 3

OVERHEAD / MP 2

VERTICAL, DRIVE AT BASE/MP 4

GENERAL INFORMATION ON THE MODEL RANGE

- NC rotary tables can be operated clockwise, anti-clockwise and also in reversing mode.
- The NC rotary tables are "lubricated for life"!
- The maximum stated radial force and torque of the stationary central section and the output flange refer only to the rotary table.
- When determining the maximum actual load of the overall system, the influence of the plate material and the plate attachment means must also be taken into account.
- We would be happy to advise and support you in dimensioning your overall system.

OPTIONEN

- If necessary, the stationary central section can be raised 5 mm or 10 mm .
- All sizes in the NC model range can optionally be equipped with an absolute encoder. (standard encoder: Heidenhain ROQ425)
- The rotary encoder provides improved single-side positioning accuracy and also improves controllability.
- A second measuring system input is required on the servo controller to evaluate this rotary encoder.
- The 8LSA model range from B+R or the MS2N model range from Bosch Rexroth are available as standard servo motors.
. It is possible to fit popular alternative motors from various manufacturers.
- For a surcharge, a positioning accuracy measurement report can also be drawn up and a compensation table incorporated for error compensation in a further step. However, this requires a mechanical zero point alignment.
- Standard colour: RAL7035 (other colours available on request)

NC 150T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 800 mm

TECHNICAL DATA

$\mathrm{n}_{1 \text { Max }}$	Max. motor speed:	4500 1/min
$\mathrm{n}_{2 \text { Max }}$	Max. output speed:	58 1/min
$\mathrm{i}_{\text {tot }}$	Overall gear ratio:	Level A: 144.545 Level B: 77.091
	Indexing precision without additional rotary encoder:	$100 \operatorname{arcsec}\left(\pm 50^{\prime \prime}\right)$
	Indexing precision with additional rotary encoder:	$80 \operatorname{arcsec}\left(\pm 40^{\prime \prime}\right)$
A_{r}	Axial run-out of the drive flange:	(at 0 150 mm) 0.01 mm
C_{r}	Concentricity of the output flange:	0.01 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm
m	Total weight, including motor:	approximately 24 kg
D_{i}	Min. inside diameter of the rotary plate:	80 mm

TIMING DIAGRAM

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	140 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	200 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	3500 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	2500 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathbf{T} \text { dyn }}$	Permitted dynamic tilting moment:	500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	5500 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	6000 N

$D_{i} \quad$ Min. inside diameter of the rotary 80 mm plate:

DIMENSIONS

The output flange position shown corresponds to the home position of the rotary table (delivery state).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent.

Note:

The motor must be accessible for servicing! Please leave the necessary space for motor plug and cable outlet. If you require subsequent drilling work on the rotary table, please request information on permissible drilling depths.

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1100 mm

TECHNICAL DATA

$\mathrm{n}_{1 \text { Max }}$	Max. motor speed:	4000 1/min
$\mathrm{n}_{2 \text { Max }}$	Max. output speed:	56 1/min
$\mathrm{i}_{\text {tot }}$	Overall gear ratio:	Level A: 171.145 Level B: 71.314
	Indexing precision without additional rotary encoder:	$90 \operatorname{arcsec}\left(\pm 45^{\prime \prime}\right)$
	Indexing precision with additional rotary encoder:	$70 \operatorname{arcsec}\left(\pm 35^{\prime \prime}\right)$
Ar	Axial run-out of the drive flange:	(at Ø 220 mm) 0.01 mm
C_{r}	Concentricity of the output flange:	0.01 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm
m	Total weight, including motor:	approximately 44 kg
D	Min. inside diameter of the rotary plate:	96 mm

TIMING DIAGRAM

DIMENSIONS

The output flange position shown corresponds to the home position of the rotary table (delivery state).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent.

Note:

The motor must be accessible for servicing! Please leave the necessary space for motor plug and cable outlet. If you require subsequent drilling work on the rotary table, please request information on permissible drilling depths.

NC 320 T

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1400 mm

TECHNICAL DATA

$\mathrm{n}_{1 \text { Max }}$	Max. motor speed:	4000 1/min
$\mathrm{n}_{2 \text { Max }}$	Max. output speed:	$351 / \mathrm{min}$
$\mathrm{i}_{\text {tot }}$	Overall gear ratio:	Level A: 166.25 Level B: 113.05
	Indexing precision without additional rotary encoder:	$80 \operatorname{arcsec}\left(\pm 40^{\prime \prime}\right)$
	Indexing precision with additional rotary encoder:	$60 \operatorname{arcsec}\left(\pm 30^{\prime \prime}\right)$
Ar	Axial run-out of the drive flange:	(at 0320 mm) 0.01 mm
Cr	Concentricity of the output flange:	0.01 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm
m	Total weight, including motor:	approximately 112 kg
Di	Min. inside diameter of the rotary plate:	150 mm

TIMING DIAGRAM

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	800 Nm
$\mathbf{M}_{\mathbf{T S P}}$	Permitted tilting moment:	1800 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	18000 N
$\mathbf{F}_{\text {RSP }}$	Permitted radial force:	10000 N
Combined loads and permitted process forces only after inspection by WEISS.		

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	2250 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	15000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	13000 N

Combined loads and permitted process forces only after inspection by WEISS. flange and screw-on surface of the housing:

D Min. inside diameter of the rotary 150 mm plate:

DIMENSIONS

The output flange position shown corresponds to the home position of the rotary table (delivery state).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent.

Note:

The motor must be accessible for servicing! Please leave the necessary space for motor plug and cable outlet. If you require subsequent drilling work on the rotary table, please request information on permissible drilling depths.
freely programmable rotary tables |NR ROTARY RING table

All NR rings allow customer-specific
 drive motors to be connected

NR ROTARY RING TABLE: FLEXIBLE IN EVERY RESPECT

WHEN IT'S GOT TO BE EXACT

We manufacture high-precision plates from AlMg4.5Mn (also available anodised on request), as well as steel plates (also available chemically nickel-plated on request), as per your drawings. With test protocol - everything from a single source.

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

Production of technical braidings at Bossert + Kast: the NR 750 rotary ring table is used as a gear-driven turntable: large bearing, integrated gears, large central opening.

Rotary ring table with very large central opening, extremely flat design and high parts accuracy. The ring-shaped design allows extra free design space. The rotating aluminium ring can be adjusted to your specifications in terms of diameter and thickness.

ADVANTAGES

Ring-shaped rotary table with very large central opening

- High level of parts accuracy through locking on the outer edges
- Highly dynamic with smooth acceleration

Flat, compact design - compatible with our tried and tested machines

Four sizes

- Excellent price-performance

Appealing design

- Optionally available with standard motor and control package with W.A.S. 2

DRIVE HOUSING INSIDE/DP 1

DRIVE HOUSING BELOW /DP 2

VERSIONS: MOUNTING POSITION

STANDARD / MP 1

VERTICAL DRIVE AT BASE/MP 2
(only possible for model NR0750A)

GENERAL INFORMATION ON THE MODEL RANGE

- NR rotary ring table can be operated clockwise, anti-clockwise and also in reversing mode.
. The NR rotary ring tables are"lubricated for life"!
- All NR rotary indexing rings can be equipped with servo motors. The size of the motors should be optimally matched to the respective rotary indexing ring configuration so that the drive can never damage the rotary indexing ring.
The aluminium rotating ring should be anodised so that the seal at the bottom runs on a low-wear surface.

OPTIONS

Possible installation location: vertical rotary axis with output flange at the top

- Custom installation location, only possible for the NR0750A: horizontal rotary axis with cam housing at the base
. The 8LSA model range from B+R or the MS2N model range from Bosch Rexroth are available as standard servo motors.
- It is possible to fit popular alternative motors from various manufacturers.
. Standard colour: RAL7035 (other colours available on request)

NR $750 Z$

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 1500 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	23 1/min
$\mathbf{i}_{\mathbf{t o t}}$	Overall gear ratio:	Level K: 90 Level G: 180
	Indexing precision:	36 arcsec $\left(\pm 18^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 635 \mathrm{~mm}) 0.05 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 750 \mathrm{~mm}) 0.07 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.03 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.05 mm
\mathbf{m}	Total weight without rotary ring or motor:	230 kg

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { dyn }}$	Permitted dynamic tilting moment:	750 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	7000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	7000 N

Combined loads and permitted process forces only after inspection by WEISS.

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

The mass moment of inertia of the aluminium rotary ring in standard dimensions is $1.4 \mathrm{kgm}^{2}$.

DIMENSIONS

The shown position of the rotating ring corresponds to the home position (state of delivery). Additional indexing plates are not included in the standard delivery scope and are subject to an extra charge. They are calculated separately as per your details.

Alternative position:

Auxiliary holes for production: based on the plate diameter; $3 \times 120^{\circ}\left(=360^{\circ}\right)$

NR $1100 Z$

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 2200 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	23 1/min
$\mathbf{i}_{\mathbf{t o t}}$	Overall gear ratio:	Level K: 88 Level G: 176
	Indexing precision:	36 arcsec $\left(\pm 18^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 945 \mathrm{~mm}) 0.06 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 1100 \mathrm{~mm}) 0.07 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.04 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.06 mm
\mathbf{m}	Total weight without rotary ring or motor:	310 kg

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { dyn }}$	Permitted dynamic tilting moment:	2500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	12000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	12000 N

Combined loads and permitted process forces only after inspection by WEISS.

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is $7.0 \mathrm{kgm}^{2}$.

DIMENSIONS

The shown position of the rotating ring corresponds to the home position (state of delivery). Additional indexing plates are not included in the standard delivery scope and are subject to an extra charge. They are calculated separately as per your details.

Customer-specific plate design (part of the functionality of NR)
Never make a through hole within the

NR $1500 Z$

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 3000 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$181 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	Level K: 112 Level G: 224
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1275 \mathrm{~mm}) 0.08 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 1500 \mathrm{~mm}) 0.1 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.04 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
\mathbf{m}	Total weight without rotary ring or motor:	$\mathbf{4 0 0} \mathrm{kg}$

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { dyn }}$	Permitted dynamic tilting moment:	3200 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	16000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	16000 N

Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is $22.5 \mathrm{kgm}^{2}$.

DIMENSIONS

The shown position of the rotating ring corresponds to the home position (state of delivery). Additional indexing plates are not included in the standard delivery scope and are subject to an extra charge. They are calculated separately as per your details.

NR $2200 Z$

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 4400 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$91 / \mathrm{min}$
$\mathbf{i}_{\mathbf{t o t}}$	Overall gear ratio:	Level K: 220 Level G: 440
	Indexing precision:	24 arcsec $\left(\pm 12^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at Ø 1990 mm$) 0.08 \mathrm{~mm}$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out, including the rotary ring:	(at $\emptyset 2200 \mathrm{~mm}) 0.15 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.05 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
\mathbf{m}	Total weight without rotary ring or motor:	950 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { dyn }}$	Permitted dynamic tilting moment:	4500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	30000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	30000 N

Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is $111.7 \mathrm{kgm}^{2}$.

DIMENSIONS

The shown position of the rotating ring corresponds to the home position (state of delivery). Additional indexing plates are not included in the standard delivery scope and are subject to an extra charge. They are calculated separately as per your details.

CR/TH

FREELY PROGRAMMABLE ROTARY TABLES |CR/TH HEAVY DUTY ROTARY TABLE

CR/TH HEAVY DUTY ROTARY TABLE: MAKES LIGHT WORK OF HEAVY LOADS

FOR HORIZONTAL AXES

User-programmable rotary barrel drive of the TH range for horizontal loads and high breakdown torque levels. With screw-on surfaces for Buhl pinning and optional rotary encoder.

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

THE TECHNOLOGY MAKES THE DIFFERENCE

The cam drive, positioned far toward the outside, enables the highest precision and dynamic performance

This cooling carousel at one of Cirex's casting stations in the Netherlands has a diameter of 10 metres and weighs 30 tonnes. It is driven by a CR. A special bearing has been fitted to handle the high tilting moment as a result of the uneven load.

Flat heavy duty rotary table with large central opening. A real powerhouse. User-programmable. The flat design frees up space for ergonomically optimal workplaces.

ADVANTAGES

Extremely flat design

- Large central opening for optimum feed-through of supply cables
. Extremely smooth and quiet running (<70 dBA)
- Splashproof
- Covered gaskets for protection from welding sparks
- The flexible motor flange principle makes it easy to connect third-party motors
- Maximum power transmission with zero backlash thanks to multiple cam rollers that are tensioned against one another and meshed
- positioning and repeatablility accuracy
- CR range with available manual hand crank
- Impressive price-performance
- Mounted on high-precision needle bearings to handle the heaviest loads in both the axial and radial direction

Permanent status monitoring through W.A.S. 2 - WEISS Application Softwaremit unserem Standard-Steuerungspaket

GENERAL INFORMATION

CR/TH heavy duty rotary indexing tables are user-programmable

CR/TH heavy duty rotary indexing tables are "lubricated for life"!
Freely accessible square shaft available for attaching a handwheel or hand crank (except on CR0400 model).

OPTIONS

Possible installation location: vertical rotary axis (please consult WEISS for overhead or other installation positions).

Additional rotary encoder option: standard manufacturer Heidenhain, type ROQ 425 with the EnDat 2.1 interface (other types or manufacturers available on request).

For a surcharge, a positioning accuracy measurement report can also be drawn up and a compensation table incorporated for error compensation in a further step. However, this requires a mechanical zero point alignment.

Standard colour: RAL7035 (other colours available on request)

CR 300E

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$201 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	130.2
	Indexing precision:	$60 \operatorname{arcsec}\left(\pm 30^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\varnothing \mathbf{2 8 0 ~ m m}) 0.01 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.01 mm
\mathbf{m}	Total weight, including motor:	approximately 210 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{s P}}$	Permitted torque:	150 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	300 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	6500 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	3500 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~d} \text { dyn }}$	Permitted dynamic tilting moment:	3000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	20000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	5500 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

Square 24 mm shaft for hand

It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent. A taller central section is available on request.

CR 400E

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$30001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$13.51 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	222.04
	Indexing precision:	$100 \operatorname{arcsec}\left(\pm 50{ }^{\prime \prime}\right)$
	Axial run-out of the drive flange:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Concentricity of the output flange:	(at $\emptyset 400 \mathrm{~mm}) 0.015 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Total weight, including motor:	0.015 mm
\mathbf{m}	Gesamtgewicht inkl. Motor:	approximately 300 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	300 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	650 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	10000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	6000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	3000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	30000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	8000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent. A taller central section is available on request.

CR 500E

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$131 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	163.69
	Indexing precision:	$50 \operatorname{arcsec}\left(\pm 25^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 445 \mathrm{~mm}) 0.015 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.015 mm
\mathbf{m}	Total weight, including motor:	approximately 420 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	500 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	1500 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	18000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	10000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~d} \text { dyn }}$	Permitted dynamic tilting moment:	3500 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	40000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	15000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent. A taller central section is available on request.

CR 700C

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$141 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	144
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 700 \mathrm{~mm}) 0.02 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.02 mm
\mathbf{m}	Total weight, including motor:	approximately 630 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	1700 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	3500 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	35000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	19000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~d} \text { dyn }}$	Permitted dynamic tilting moment:	10000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	$\mathbf{7 0 0 0 0} \mathrm{N}$
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	30000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery). It is possible to fit popular alternative motors from various manufacturers.

CR 1000C

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$24001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$121 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	200
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1000 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{m}	Total weight, including motor:	approximately 1450 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	2000 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	6000 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	45000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	19000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~d} \text { dyn }}$	Permitted dynamic tilting moment:	25000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	120000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	100000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery).
The motor dimensions refer to the model 8LSA84.E1022D200-0 by B\&R.
It is possible to fit alternative motors from various manufacturers.

CR 1300C

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$111 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	180
	Indexing precision:	$24 \operatorname{arcsec}\left(\pm 12^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1248 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{m}	Total weight, including motor:	approximately 2000 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { T dyn }}$	Permitted dynamic tilting moment:	35000 Nm
$\mathbf{F}_{2 \text { dyn }}$	Permitted dynamic axial force:	150000 N
$\mathbf{F}_{2 \mathrm{Rdyn}}$	Permitted dynamic radial force:	100000 N

TIMING DIAGRAM (please contact us for other requests)

The shown position of the dial plate corresponds to the home position (state of delivery).
The motor dimensions refer to the model 8LSA84.E1022D200-0 by B\&R. It is possible to fit alternative motors from various manufacturers. An additional reduction gear may be required with several motors.

CR 2000C

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$6.51 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	310
	Indexing precision:	$20 \operatorname{arcsec}\left(\pm 10^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1874 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{m}	Total weight, including motor:	approximately 3600 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { T dyn }}$	Permitted dynamic tilting moment:	55000 Nm
$\mathbf{F}_{2 \text { dyn }}$	Permitted dynamic axial force:	250000 N
$\mathbf{F}_{2 \mathrm{Rdyn}}$	Permitted dynamic radial force:	125000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery).
The motor dimensions refer to the model 8LSA84.E1022D200-0 by B\&R. It is possible to fit alternative motors from various manufacturers. An additional reduction gear may be required with several motors.

TH 700F

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$20001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$141 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	144
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 700 \mathrm{~mm}) 0.02 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.02 mm
\mathbf{m}	Total weight, including motor:	approximately 630 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	1700 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	3500 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	35000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	19000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	10000 Nm
$\mathbf{F}_{2 \mathrm{Adyn}}$	Permitted dynamic axial force:	$\mathbf{7 0 0 0 0} \mathrm{N}$
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	30000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent.

TH 1000 F

TECHNICAL DATA

$\mathbf{n}_{\mathbf{1 M a x}}$	Max. motor speed:	$24001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$121 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	200
	Indexing precision:	$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1000 \mathrm{~mm}) 0.03 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.03 mm
\mathbf{m}	Total weight, including motor:	approximately 1500 kg

The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	2000 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	6000 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	45000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	19000 N

Combined loads and permitted process forces only after inspection by WEISS.
LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { T dyn }}$	Permitted dynamic tilting moment:	25000 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	120000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	100000 N

TIMING DIAGRAM (please contact us for other requests)

DIMENSIONS

The shown position of the dial plate corresponds to the home position (state of delivery).
It is possible to fit popular alternative motors from various manufacturers. The drive flange geometries are motor-dependent.

T0

freely programmable rotary tables |TO toroue rotary table

Precise and fast mechanical integration through pin holes, secure electrical commissioning through perfectly matched control packages.

TO TORQUE ROTARY TABLE: DYNAMIC, FLEXIBLE, PRECISE

MATCHED BASE FRAMES AND PLATES

Simple integration into existing equipment. Highly dynamic, high-precision and ready-for-installation rotary table solution with unbeatable price-performance.

THE CLEANLINE. FOR CLEANROOM APPLICATIONS.
Comparable to air purity class 1 as per US Standard 209E.

The custom machine from INNOVATIVE Products \& Equipment assembles and tests plastic parts for irrigation systems. The heart of the installation, a TO 750, beats at 75 cycles per minute. The four-track design allows production of 300 components per minute. The HP140 Pick\&Place units perform component handling.

Direct drive rotary table with impressive dynamics and extremely high degree of repeat accuracy. User-programmable and also suitable for use in clean rooms. The direct drive rotary table allows the shortest indexing times at the highest precision.

ADVANTAGES

Extremely dynamic
Extremely high repeat accuracy
Absolute measuring system
High degree of reliability, long service life
Zero backlash
No wearing parts
Direct, rigid connection of the load to the drive
Compact design, small footprint, high level of torque

GENERAL INFORMATION

Direction of rotation: user-programmable
All motors are equipped with overtemperature protection (PTC)

Possible installation location: any (Please consult WEISS for overhead mounting positions)

The TO rotary tables are "lubricated for life"
For a surcharge, a positioning accuracy measurement report can also be drawn up and a compensation table incorporated for error compensation in a further step. However, this requires a mechanical zero point alignment.

TO 150C

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 750 mm

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (230 V):	$601 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (400 V):	$2001 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque:	15 Nm
$\mathbf{T}_{2 \mathbf{P}}$	Peak torque:	45 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	6.23 A
	Indexing precision:	$50 \mathrm{arcsec}\left(\pm 25^{\prime \prime}\right)$
		$30 \operatorname{arcsec}\left(\pm 15^{\prime \prime}\right)$ (optional)
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 150 \mathrm{~mm}) 0.02 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.02 mm
\mathbf{m}	Weight:	16 kg

TIMING DIAGRAM

DIMENSIONS

TO 220C-1

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1100 mm

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (230 V):	$801 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (400 V):	$2501 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque:	54 Nm
$\mathbf{T}_{2 \mathbf{P}}$	Peak torque:	130 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	9 A
	Indexing precision:	50 arcsec ($\left.\pm 25^{\prime \prime}\right)$
		30 arcsec ($\left.\pm 15^{\prime \prime}\right)$ (optional)
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 220 \mathrm{~mm}) 0.02 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.02 mm
\mathbf{m}	Weight:	32 kg

TIMING DIAGRAM

DIMENSIONS

TO 220C-2

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1100 mm
The rotary table can also be water-cooled for even shorter cycle times and greater precision

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (400 V):	$1101 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque without water cooling:	123 Nm
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque with water cooling:	194 Nm
$\mathbf{T}_{\mathbf{2 P}}$	Peak torque:	260 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	18 A
	Indexing precision:	$30 \mathrm{arcsec}\left(\pm 15^{\prime \prime}\right)$
\mathbf{A}	Axial run-out of the drive flange:	(at $\emptyset 220 \mathrm{~mm}) 0.02 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	0.02 mm
\mathbf{m}	Weight:	42 kg

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{s P}}$	Permitted torque:	200 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	500 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	5000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	5000 N

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { t stat }}$	Permitted static tilting moment:	1000 Nm
$\mathbf{F}_{\text {2A stat }}$	Permitted static axial force:	10000 N
$\mathbf{F}_{\text {2R stat }}$	Permitted static radial force:	15000 N

Combined loads and permitted process forces only after inspection by WEISS.
ENCODER
Heidenhain ECN225 (absolute) EnDat 2.1 ($\pm 15^{\prime \prime}$)

TIMING DIAGRAM

DIMENSIONS

T0 400C

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t p}$: approximately 1400 mm
- The TO rotary table can optionally be supplied with a brake
- The rotary table can also be water-cooled for even shorter cycle times and greater precision

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (400 V):	$1001 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque without water cooling:	525 Nm
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque with water cooling:	1240 Nm
$\mathbf{T}_{2 \mathbf{P}}$	Peak torque:	2120 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	175 A
	Indexing precision:	20 arcsec (± 10 ")
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 400 \mathrm{~mm}$) 0.03 mm
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.03 mm
$\mathbf{\mathbf { p } _ { \mathbf { a } }}$	Clamping element opening pressure (pressure monitoring recommended)	4 bar (optional)
\mathbf{m}	Weight:	290 kg

LOAD DATA (for the output flange)

$\mathbf{M}_{2 \text { stat }}$	Permitted static tilting moment:	8000 Nm
$\mathbf{F}_{2 \text { A stat }}$	Permitted static axial force:	40000 N
$\mathbf{F}_{2 \text { R stat }}$	Permitted static radial force:	50000 N

ENCODER
Renishaw Resolute (absolute) BISS

TIMING DIAGRAM

DIMENSIONS

TO 750C

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 2500 mm

- The TO rotary table can optionally be supplied with a brake
. The rotary table can also be water-cooled for even shorter cycle times and greater precision
- In some cases, the rotary table can be equipped with functional safety (on request)

TECHNICAL DATA

U	Voltage range:	200-600 V
$\mathrm{n}_{2 \text { Max }}$	Max. output speed (400 V):	50 1/min
$\mathrm{T}_{2 \mathrm{~N}}$	Nominal torque without water cooling:	623 Nm
$\mathrm{T}_{2 \mathrm{~N}}$	Nominal torque with water cooling:	1700 Nm
$\mathrm{T}_{2 \mathrm{P}}$	Peak torque:	3500 Nm
$I_{\text {p }}$	Peak current:	75 A
	Indexing precision:	$20 \operatorname{arcsec}\left(\pm 10^{\prime \prime}\right)$
Ar	Axial run-out of the drive flange:	(at 0750 mm) 0.02 mm
Cr	Concentricity of the output flange:	0.02 mm
p_{a}	Clamping element opening pressure (pressure monitoring recommended)	4 bar (optional)
m	Weight:	270 kg

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	800 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	$\mathbf{2 5 0 0 ~ N m}$
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	$\mathbf{2 5 0 0 0} \mathrm{N}$
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	15000 N

LOAD DATA (for the output flange)

$\mathbf{M}_{\text {2T stat }}$	Permitted static tilting moment:	6000 Nm
$\mathbf{F}_{\text {2A stat }}$	Permitted static axial force:	25000 N
$\mathbf{F}_{\text {2R stat }}$	Permitted static radial force:	25000 N

Combined loads and permitted process forces only after inspection by WEISS.
ENCODER

Renishaw Signum (incremental)	\sin / \cos
Renishaw Resolute (absolute)	BISS
Renishaw Resolute (absolute)	DRIVE-CLi0
Heidenhain ECN 4410 FS (absolute)	EnDat 2.2

TIMING DIAGRAM

DIMENSIONS

TO 1300C

GENERAL INFORMATION

- Maximum recommended equipment diameter $D_{t \mathrm{t}}$: approximately 3500 mm
- The TO rotary table can optionally be supplied with a brake
- The rotary table can also be water-cooled for even shorter cycle times and greater precision

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed (400 V):	$801 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque without water cooling:	6460 Nm
$\mathbf{T}_{\mathbf{2 N}}$	Nominal torque with water cooling:	15200 Nm
$\mathbf{T}_{2 \mathbf{P}}$	Peak torque:	26600 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	888 A
	Indexing precision:	20 arcsec ($\pm 10 \prime$)
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 1300 \mathrm{~mm}) 0.04 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.03 mm
$\mathbf{p}_{\mathbf{c c}}$	Clamping element opening pressure (pressure monitoring recommended)	6 bar
\mathbf{m}	Weight:	1350 kg

TIMING DIAGRAM

DIMENSIONS

3x M16
Auxiliary holes for production: ${ }^{\circ}$ based on the plate diameter

Base plate breakthrough for using the central bore or for access to the measuring system and clamping element air $\varnothing 6$ screw connection
Cooling water

ST

ROTATING UNITS |ST TORQUE ROTATING UNIT

ST TORQUE ROTARY UNITS

CABLE CONNECTION

Compact connector for any orientation of cable connection

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

The ST 140 rotary unit operating in perfect harmony with the LS 280 linear assembly system. The installation at Jouhsen-bündgens Maschinenbau GmbH is used to produce medical needles at high speeds. Thanks to the new system, it has been possible to almost double the output.

The ST rotating units with absolute rotary encoder are the ideal choice for precise and highly dynamic rotary, swivel and gripping movements. Whether used to supply and position components, as swivel units for grippers or as a replacement for servomotors with planetary gears, the ST rotating units offer the perfect solution. Their compactness, light weight, versatile attachment options, as well as the various designs and other options available allow a broad range of applications to be covered.

ADVANTAGES

Extremely dynamic
Long lifetime
No maintenance cost
Compact design - low weight
Rigid mechanical design

- Absolute encoder
- High power density
- Optionally available with electric holding brake

ALLGEMEINE ANGABEN

The ST model range comprises direct-drive rotating units (with the exception of ST55)

ST rotating units are user-programmable
Possible installation location: any
The ST rotating units are "lubricated for life"
All motors are equipped with overtemperature protection (PTC)

For a surcharge, a positioning accuracy measurement report can also be drawn up and a compensation table incorporated for error compensation in a further step. However, this requires a mechanical zero point alignment.

ST 55 A

GENERAL INFORMATION

- Max. recommended diameter of rotating plate $D_{t p}$: approximately 200 mm
- Lightweight and compact rotating unit with transmission for end-of-arm applications

TECHNICAL DATA

\mathbf{U}	Voltage range:	230 V
$\mathbf{n}_{\mathbf{2 N}}$	Nominal speed:	$301 / \mathrm{min}$
$\mathbf{n}_{\mathbf{2 M a x}}$	Max. output speed:	$701 / \mathrm{min}$
$\mathbf{T}_{\mathbf{2 P}}$	Peak torque:	36 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	2.9 A
	Indexing precision:	$60 \operatorname{arcsec}\left(\pm 30^{\prime \prime}\right)$
\mathbf{m}	Weight:	1.1 kg

LOAD DATA (for the output flange)

$\mathbf{M}_{\text {2T stat }}$	Permitted static tilting moment:	44 Nm
$\mathbf{F}_{\text {2A stat }}$	Permitted static axial force:	1900 N
$\mathbf{F}_{\text {2R stat }}$	Permitted static radial force:	1440 N

Combined loads and permitted process forces only after inspection by WEISS.

ENCODER
Sick-Stegmann SEL37 Hiperface

TIMING DIAGRAM

DIMENSIONS

ST 75 A

GENERAL INFORMATION

- Max. recommended diameter of rotating plate $D_{t p}$: approximately 400 mm
- Small compact rotating units for end-of-arm or small rotary applications
The rotating units are available in three different motor sizes with the same flange dimensions

OPTIONS

- The rotating units can optionally be equipped with a brake
- A choice of various encoder accuracies ensures maximum design flexibility

TECHNICAL DATA

		ST 75-1	ST 75-2	ST 75-3
\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$	$200-600 \mathrm{~V}$	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{1 M a x}}$	Max. speed(230 V):	$10001 / \mathrm{min}$	$4001 / \mathrm{min}$	$4501 / \mathrm{min}$
$\mathbf{n}_{\mathbf{1 M a x}}$	Max. speed (400 V):	$31001 / \mathrm{min}$	$17001 / \mathrm{min}$	$16001 / \mathrm{min}$
$\mathbf{T}_{\mathbf{1 N}}$	Nominal torque:	0.5 Nm	1.0 Nm	1.4 Nm
$\mathbf{T}_{\mathbf{1 P}}$	Peak torque:	1.4 Nm	2.8 Nm	4.2 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	1.6 A	1.9 A	2.2 A
	Indexing precision:	s. encoder	$\mathrm{s} encoder$.	$\mathrm{s} encoder$.
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$
\mathbf{m}	Weight:	1.7 kg	2.2 kg	2.7 kg

LOAD DATA (for rotary plate)

		ST 75-1	ST 75-2	ST 75-3
$\mathbf{M}_{\text {2T dyn }}$	Perm. dynamic tilting moment:	20 Nm	25 Nm	35 Nm
$\mathbf{M}_{\text {2T stat }}$	Perm. static tilting moment:	40 Nm	50 Nm	70 Nm
$\mathbf{F}_{\text {2A dyn }}$	Permitted dynamic axial force:	150 N	150 N	150 N
$\mathbf{F}_{\text {2A stat }}$	Permitted static axial force:	500 N	500 N	500 N
$\mathbf{F}_{\text {2R dyn }}$	Permitted dynamic radial force:	200 N	220 N	250 N
$\mathbf{F}_{\text {2R stat }}$	Permitted static radial force:	500 N	650 N	800 N

Combined loads and permitted process forces only after inspection by WEISS.
ENCODER

Sick-Stegmann SEK52 (absolute):	$560 \operatorname{arcsec}(\pm 280$ ") Hiperface
Sick-Stegmann SKS36 (absolute):	$240 \operatorname{arcsec}(\pm 120$ ") Hiperface
Heidenhain ECN413 (absolute):	$120 \operatorname{arcsec}(\pm 60$ ") EnDat 2.1
Heidenhain ECN413 (absolute):	$40 \operatorname{arcsec}(\pm 20$ ") EnDat 2.1

TIMING DIAGRAM

ST 75-2

ST 75-3

DIMENSIONS

* only with encoder SEK52"

	A					
	SEK52		SKS36		ECN413	
		Brake		Brake		Brake
ST0075-1	111	150	123	165	143	181
ST0075-2	131	170	143	185	163	201
ST0075-3	151	190	163	205	183	221

[^6]
ST 140 A

GENERAL INFORMATION

- Max. recommended diameter of rotating plate $D_{t p}$: approximately 700 mm
- Compact rotating units for end-of-arm or small rotary applications
The rotating units are available in two different motor sizes with the same flange dimensions

OPTIONS

- The rotating units can optionally be equipped with a brake
- The connector outlet can be straight or angled 90° downward
- A choice of various encoder accuracies ensures maximum design flexibility

TECHNICAL DATA

		ST 140-1	ST 140-2
\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}$	$200-600 \mathrm{~V}$
$\mathbf{n}_{\mathbf{1} \mathbf{~ M a x}}$	Max. speed(230 V):	$6001 / \mathrm{min}$	$6001 / \mathrm{min}$
$\mathbf{n}_{\mathbf{1 M a x}}$	Max. speed (400 V):	$14001 / \mathrm{min}$	$12001 / \mathrm{min}$
$\mathbf{T}_{\mathbf{1 N}}$	Nominal torque:	6 Nm	12 Nm
$\mathbf{T}_{\mathbf{1 p}}$	Peak torque:	18 Nm	36 Nm
$\mathbf{I}_{\mathbf{p}}$	Peak current:	5.6 A	10.5 A
	Indexing precision:	$\mathrm{s} encoder$.	s. encoder
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$
\mathbf{C}	Concentricity of the output flange:	$\pm 0.01 \mathrm{~mm}$	$\pm 0.01 \mathrm{~mm}$
\mathbf{m}	Weight:	6.9 kg	8.6 kg

LOAD DATA (for rotary plate)

		ST 140-1	ST 140-2
$\mathbf{M}_{2 \mathbf{T} \text { dyn }}$	Permitted dynamic tilting moment:	65 Nm	90 Nm
$\mathbf{M}_{\text {2T stat }}$	Permitted static tilting moment:	130 Nm	180 Nm
$\mathbf{F}_{\text {2A dyn }}$	Permitted dynamic axial force:	300 N	300 N
$\mathbf{F}_{\text {2A stat }}$	Permitted static axial force:	800 N	800 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	400 N	500 N
$\mathbf{F}_{\text {2R stat }}$	Permitted static radial force:	800 N	1000 N

Combined loads and permitted process forces only after inspection by WEISS.
ENCODER

Sick-Stegmann SEK90 (absolute)	$240 \operatorname{arcsec}(\pm 120$ ") Hiperface
Heidenhain ECN113 (absolute)	$50 \operatorname{arcsec}(\pm 25$ ") EnDat 2.1
Heidenhain ECN225 (absolute)	$30 \operatorname{arcsec}(\pm 15$ ") EnDat 2.1

TIMING DIAGRAM

ST 140-1

ST 140-2

DIMENSIONS

	A				B		
	SEK90		ECN113		ECN225		
		Brake		Brake		Brake	
ST0140-1	134	189.5	168	224	168	224	87
ST0140-2	161.5	217	195.5	251.5	195.5	251.5	114.5

[^7]
TW

FREELY PROGRAMMABLE ROTARY TABLES |TW ROTARY TABLE WITH HYBRID DRIVE

DER TW MIT HYBRID-DRIVE

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

SMALL, MEDIUM, LARGE

Available in three sizes!

A direct drive motor integrated with a high-precision gear, absolute encoder and built-in brake combined with a robust mechanical platform. The TW sets new standards in the compact rotary table-area in the following characteristics: dynamic, precision, user programmable and ease of use, power density and the precise and robust WEISS mechanics.

These products are designed to greatly outperform any pneumatic indexing solutions available. Additional user benefits: Comparable in cost to pneumatic solutions, a clear cost advantage is developed through enhancement in productivity, lower operating cost and reduced maintenance cost.

ADVANTAGES

- Much faster than pneumatic solution
- Much more precise than pneumatic solution
- Higher power density than pneumatic solution
- Very little dwelltime
- Absolute encoder
- Precise zero-point through locating holes in the body
- Precise teaching of each position
- Rigid stationary center section in various levels
- Electronic overload protection
- Any mounting position possible
- High energy efficiency
- Integrated holding brake
- No wear

ANGLED 90° DOWNWARD

STRAIGHT

VERSIONS: MOUNTING POSITION

STANDARD / MP 1

OVERHEAD/MP 3

GENERAL INFORMATION ON THE MODEL RANGE

TW Rotary tables with hybrid drive are user-programmable
. TW Rotary tables with hybrid drive are "lubricated for life"!

- The maximum stated radial force and torque of the stationary central section and the output flange refer only to the rotary indexing table.
- When determining the maximum actual load of the overall system, the influence of the plate material and the plate attachment means must also be taken into account.
. We would be happy to advise and support you in dimensioning your overall system.

OPTIONS

Possible mounting positions: vertical rotary axis, standard or overhead (Please consult WEISS for overhead mounting positions)

- With the TW0150 and TW0200 models, users can choose between a lowered or raised central section.
- With the TW0300 model, only the version with raised central section is available.
- All sizes in the TW model range can optionally be equipped with an absolute encoder.
" Standard: Sick-Stegmann, type SEL52 - Hiperface interface
» Custom option: Heidenhain, type EQl 1130 - EnDat 2.1 interface
- Connector outlet straight or angled 90° downward
- Standard colour: RAL7035 (other colours available on request)

TW 150A

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 800 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2} \text { Max }}$	Max. motor speed:	$1001 / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	9
$\mathbf{T}_{2 \text { Stat }}$	Static torque (braked):	13.5 Nm
	Indexing precision:	$130 \mathrm{arcsec}\left(\pm 65^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at 0140 mm$) 0.02 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.02 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm
\mathbf{m}	Total weight, including motor:	approximately 27 kg
$\mathbf{D} \mathbf{i}$	Min. inside diameter of the rotary plate (on variant with raised stationary central section)	100 mm
	max. play of the holding brake at output flange	$\pm 0,12 \mathrm{~mm}$

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{s P}}$	Permitted torque:	140 Nm
$\mathbf{M}_{\text {T SP }}$	Permitted tilting moment:	200 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	3500 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	2500 N

Combined loads and permitted process forces only after inspection by WEISS.

LOAD DATA (for the output flange)

$\mathbf{T}_{2 \mathrm{~A}}$	Max. acceleration torque:	60 Nm
$\mathbf{T}_{2 \mathbf{N}}$	Nom. torque:	30 Nm
$\mathbf{M}_{2 \mathrm{Tdyn}}$	Permitted dynamic tilting moment:	500 Nm
$\mathbf{F}_{2 \mathrm{Adyn}}$	Permitted dynamic axial force:	5500 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	6000 N

TIMING DIAGRAM

DIMENSIONS

TW 200A

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1100 mm

TECHNICAL DATA

$\mathbf{n}_{\mathbf{2 M a x}}$	Max. motor speed:	$120 \mathrm{1} / \mathrm{min}$
$\mathbf{i}_{\text {tot }}$	Overall gear ratio:	10
$\mathbf{T}_{\mathbf{2 ~ S t a t}}$	Static torque (braked):	75 Nm
	Indexing precision:	$110 \operatorname{arcsec}\left(\pm 55^{\prime \prime}\right)$
$\mathbf{A}_{\mathbf{r}}$	Axial run-out of the drive flange:	(at $\emptyset 190 \mathrm{~mm}) 0.02 \mathrm{~mm}$
$\mathbf{C}_{\mathbf{r}}$	Concentricity of the output flange:	0.02 mm
\mathbf{P}	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm

m Total weight, including motor: approximately 40 kg
$\mathbf{D}_{\mathbf{i}}$ Min. inside diameter of the $\quad 110 \mathrm{~mm}$
rotary plate (on variant with raised stationary central section)
max. play of the holding brake at $\pm 0,12 \mathrm{~mm}$ output flange

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	145 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	300 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	5000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	4000 N

Combined loads and permitted process forces only after inspection by WEISS.

LOAD DATA (for the output flange)

$\mathbf{T}_{2 \mathrm{~A}}$	Max. acceleration torque:	180 Nm
$\mathbf{T}_{2 \mathbf{N}}$	Nom. torque:	90 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	700 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	7500 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	8000 N

TIMING DIAGRAM

DIMENSIONS

Max. center line deviation between stationary center section and housing ± 250 "

TW 300A

GENERAL INFORMATION

Maximum recommended equipment diameter $D_{t p}$: approximately 1400 mm

TECHNICAL DATA

$\mathrm{n}_{2 \text { Max }}$	Max. motor speed:	110 1/min
$\mathrm{i}_{\text {tot }}$	Overall gear ratio:	11
$\mathrm{T}_{2 \text { Stat }}$	Static torque (braked):	165 Nm
	Indexing precision:	$90 \operatorname{arcsec}\left(\pm 45^{\prime \prime}\right)$
A	Axial run-out of the drive flange:	(at Ø 280 mm) 0.02 mm
C_{r}	Concentricity of the output flange:	0.02 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.03 mm
m	Total weight, including motor:	approximately 106 kg
D_{i}	Min. inside diameter of the rotary plate	150 mm
	max. play of the holding brake at output flange	$\pm 0,12 \mathrm{~mm}$

LOAD DATA (for the stationary central part)

$\mathbf{T}_{\mathbf{S P}}$	Permitted torque:	800 Nm
$\mathbf{M}_{\mathbf{T} \text { SP }}$	Permitted tilting moment:	1800 Nm
$\mathbf{F}_{\text {A SP }}$	Permitted axial force:	18000 N
$\mathbf{F}_{\text {R SP }}$	Permitted radial force:	6000 N

Combined loads and permitted process forces only after inspection by WEISS.

LOAD DATA (for the output flange)

$\mathbf{T}_{2 A}$	Max. acceleration torque:	450 Nm
$\mathbf{T}_{2 \mathrm{~N}}$	Nom. torque:	225 Nm
$\mathbf{M}_{2 \mathrm{~T} \text { dyn }}$	Permitted dynamic tilting moment:	2250 Nm
$\mathbf{F}_{2 \mathrm{~A} \text { dyn }}$	Permitted dynamic axial force:	15000 N
$\mathbf{F}_{2 \mathrm{R} \text { dyn }}$	Permitted dynamic radial force:	13000 N

TIMING DIAGRAM

DIMENSIONS

CUSTOMER-SPECIFIC SOLUTIONS

SR/SK

CUSTOMER-SPECIFIC SOLUTIONS |SR/SK INDEXING MACHINE BASES

CUSTOMER-SPECIFIC SOLUTIONS: A SYSTEM OF MATCHED COMPONENTS

ADVANTAGES

Guaranteed quality

No nasty surprises. We produce and supply your machine from a single source as per your own specifications in terms of design, precision, dimensions and even colour - all guaranteed and documented. You receive a test report with every machine.

Fastest delivery time

There's no need to reinvent the wheel: based on optimised standards, we implement your solution precisely with a keen focus on your goals and requirements. We then supply your machine within four to eight weeks.

Time and cost savings

Reduced total costs through assumption of project management and engineering work, no interface problems and one allocated contact.

Surface treatment

We are happy to offer all components in whatever surface finish you desire:
Anodised (available in 5 standard colours, others on request, Al)
Hard-coated (Al)
Bronzed (steel)
Nickel-plated (Al or steel)

Tried-and-tested standard modules form the basis for perfectly matched system solutions. From the design, through the requisite precision and dimensions, all the way up to the colour: customers can select all parameters individually. You receive an acceptance certificate and the confidence of knowing that everything works together perfectly. Take advantage of our complete package for rotary table-based basic machines.

We support you in optimising time, costs and resources when creating your system. You have a single contact and receive everything from a single source, so you do not need to worry about interface problems.

SR SERIES

SPECIAL FEATURES:

Standard sizes:
SR 100B, SR 200B, SR 300B, SR 400B, SR 500B

- 2-4 standard ribbed legs depending on diameter (custom arrangement available on request)

Customised diameters
Customised sizes available upon request

ROTARY INDEXING TABLES

Select the rotary indexing table suitable for your application
Series TC/NC, TR/NR, TW, TO, CR all are available in various model sizes

The overall height of your machine will be determined by the height of the indexing unit used and the length of the support legs

Laser measurement of the indexing precision possible on request

ROTARY PLATE

- Ultimate precision and machining on the latest CNC drilling machines in climate-controlled rooms

Dimensions, manufacturing and surface treatments according to your specification

Supplied with a quality certificate

SK SERIES

SPECIAL FEATURES:

Standard sizes: SK 100B, SK 200B, SK 300B

- Integrated switch cabinets available
- Any edge dimensions possible
- Customised sizes available upon request

BASE PLATES

Round, square or rectangular

- Dimensions, material and processing according to your specification
- Machining according to your drawing
- T-slots possible
- Cable ducts standard

BASE FRAMES

Round and square standard sizes
Height adjustment possible
Customised design upon request
High quality rigid fabricated construction
Control cabinets for the square model
Height-adjustable and shock-absorbing feet

STATIONARY PLATE

- With integrated lip seal between stationary and rotating indexing plate
- In aluminium or steel, manufactured according to your drawing
- T-grooves possible for variable module arrangement

SR SERIES

TABLE OF DIMENSIONS FOR STANDARD VERSION (Attention! New type designation)

Type	Recommended rotary table type	$\underset{\text { (Standard) }}{\text { ØA }}$	B	B*	H	Ø1	ØJ	ØK
SR 100B	TC/NC 150-320, TW 150-300 TO 150-220, CR 300	1300	35	40	575	960	615	960
SR 200B	TC/NC 220 - 320T, TC 500, CR 400 TR/NR 750, PM 1100, TO 750, TW 200-300	1500	35	40	485	1200	815	1200
SR 300B	TC/NC 320, TC 500, TC 700, TW 300 TR/NR 750, TR/NR 1100, PM 1500, CR 400-700	1800	35	40	615	1350	967	1350
SR 400B	TC 500-700, TR/NR 1100, TR/NR 1500 CR 700-1000C	2200	35	40	690	1800	1357	1800
SR 500B	TR/NR 1500, TR/NR 2200, CR 1000-1300	2500	35	40	656	2200	1700	2200

General tolerances in conformity with DIN ISO 2768-m. Special tolerances upon request/dimensions variable.
Notes: For the permissible loads of the stationary or rotary indexing plates, please refer to the "Rotary indexing table" chapter. Special machining according your drawing.

Rotary indexing ring table with base frame
and raised supports

TABLE OF DIMENSIONS FOR RAISED SUPPORTS Raised supports are optionally available for TR/NR rotary indexing rings tables.

Table type	Raised support for fixed centre plate			Raised support for rotary indexing ring tables		
	ØDS	OdS	Height	ØDR	0 dR	Height
TR/NR 750	485	410	21.5	770	440	variable
TR/NR 1100	795	720	32	1100	740	variable
TR/NR 1500	1130	1055	32	1420	1080	variable
TR/NR 2200	1745	1655	37	2200	1660	variable

DIMENSIONS

Please download the selected machine base from the internet (in 2D or 3D) directly into your CAD drawing. This will ensure you are using the latest model.

* For recommended dimensions and diameters, see "Rotary tables"
** Distance M varies according to the ridge height and can be changed by $\pm 3 \mathrm{~mm}$ by adjusting the feet

SK SERIES

TABLE OF DIMENSIONS FOR STANDARD VERSION (Attention! New type designation)

Type	Recommended rotary table type	$\square \mathbf{~} \quad \square$	B	B*	H	$\square 1$	$\square \mathbf{J}$	$\square K$
SK 100B	TC/NC 150-320, TW 150-300 TO 150-220, CR 300	1300	35	40	410	1000	615	1000
SK 200B	TC/NC 220-320, TW 200-300 TR/NR 750, CR 400, T0 750	1480	35	40	610	1300	1007	1300
SK 300B	TC/NC 320, TC 500 - 700, TW 300,TR/NR 750, TR/NR 1100, CR 400-700, PM 1100, PM 1500	1800	35	40	710	1610	1310	1610

General tolerances in conformity with DIN ISO 2768-m. Special tolerances upon request/dimensions variable.

* with T-slots

Notes: For the permissible loads of the stationary or rotary indexing plates, please refer to the "Rotary indexing table" chapter. Special machining according your drawing.

Example detailing SK 300B, TC 320T, dia and stationary plates.

DIMENSIONS

Please download the selected machine base from the internet (in 2D or 3D) directly into your CAD drawing. This will ensure you are using the latest model.

** Distance M varies according to the ridge height and can be changed by $\pm 3 \mathrm{~mm}$ by adjusting the feet

PLATES

CUSTOMER-SPECIFIC SOLUTIONS | PLATES

STATIONARY PLATE

- Standard model with integrated sealing lip between stationary and rotating plate in steel or aluminium
- Delivered with assembly hole and bore pattern (incl. middle bore) appropriate for the table, T-slots possible

Manufactured in Flatness Quality B including 3 off blanked machining holes

Please note! All drill holes are blind in order to avoid the accidental blocking of the rotary indexing table

ROTARY PLATE

Precision machined from aged material in a controlled temperature environment

- Recommended to be manufactured from aluminium to minimise weight
- With appropriate assembly holes and bore patterns (plate is located on the rotary indexing table with two dowel pins)

BASE PLATE

- 3 cable ducts as standard
- Including cut out for drive when mounted on underside, if required
- Prior to positioning your automation equipment please observe the standard hole pattern for fixing the base plate to the base frame

T-slots possible

GUARANTEED PRECISION

- We guarantee the highest precision for flatness and repeatability. Measurements are taken from the indexing dial plate when assembled to the rotary indexing unit. The precision is documented in an inspection certificate.

Indexing accuracy of hole patterns - up to $\varnothing 1800 \mathrm{~mm} \pm 3^{\prime \prime}$ over $\varnothing 1800 \mathrm{~mm} \pm 8^{\prime \prime}$

Laser measurement of the indexing precision possible
Indicate machining concerning the bore pattern
Please forward your drawing by E-Mail in pdf or DXF format

MANUFACTURING NOTE

Dial plates with a diameter more than 550 mm will have 3 auxiliary threads. At stationary plates these threads are closed by plugs. We will inform you about the possible pitch diameter and the thread size if necessary.

DELIVERY TIME

. Depending on the diameter, between four and eight weeks including drilling work

- Standard dimensions can be supplied at short notice. (outer diameters: 600, 700, 800, 1000, 1100, 1200 and 1600)
- Surface treatment: 1 week additional processing time required
- Aluminium: anodised
- Steel: chemically nickel-plated

AXIAL ACCURACY FOR ROTARY TABLES WITH PLATES

Diameter (mm)	Thickness (mm)	$\begin{gathered} \text { Flatness } \\ \text { Quality } \mathbf{A}(\mathrm{mm}) \end{gathered}$	Flatness Quality B (mm)
< 600	≥ 20	0.04	0.10
	<20	0.06	0.15
<800	≥ 20	0.06	0.15
	<20	0.07	0.18
< 1100	≥ 20	0.07	0.18
	<20	0.08	0.20
< 1400	≥ 25	0.08	0.20
	<25	0.10	0.25
< 1800	≥ 25	0.10	0.25
	<25	0.20	0.50
< 2500	≥ 30	0.15	0.40
	<30	0.25	0.55

LINEAR ASSEMBLY SYSTEM

LS 280 LINEAR ASSEMBLY SYSTEM

LINEAR ASSEMBLY SYSTEM LS: SOPHISTICATED, MODULAR CELL DESIGN

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 LS - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

THE SOLUTION FOR CLEANROOMS

LS 280 CL - The solution for the cleanroom: The Linear Assembly System LS 280 CL has been designed for use in cleanrooms and is certified to air purity class 6 in line with ISO 14644-1.

Fully automatic production system for lighting terminals. A 13-metre-long LS 280 linear assembly system with seven autonomous processing cells and a total of 45 processing positions forms the basis. Operating at a cycle time of 2.4 seconds, some 24,000 lighting terminals are manufactured per hour.

The advantages of the LS 280 result from a completely new, elegant drive principle. It combines a rotary indexing table with a transfer system, hence a cam drive with a belt system. This results in a radical reduction of the transport times as well as in an enourmously high productivity. The modular designed cell concept also allows a flexible and extendable system design.

ADVANTAGES

- Proven cam drive
- Smooth, impact free motion sequence
- Short workpiece exchange times
- High positioning precision without additional stopping or indexing modules
- High level of availability
- Modular system design
- Independently functional assembly cells
- Adjustment of varying processing times

High degree of reusability
Stable basic structure made of steel

- Delivery with complete cell wiring
- High degree of reliability
- Maintenance free
- Complete functional and quality inspection
- Short implementation time
- Fast build-up assembly
- W.A.S. 2 - WEISS Application Software for easy and fast start-up
- Convincing price / quality ratio

ESD-capability

HIGHER NUMBER OF CYCLES - MORE OUTPUT

The LS 280 achieves - due to the shortening of transport times - a cycle speed, which others can only dream of. The conventional workpiece carrier exchange - transporting, stopping, lifting and positioning - is replaced by one smooth and fast motion sequence - absolutely jerk and impact-free with up to 60 cycles per minute. With this exclusive drive principle the LS 280 combines the speed, precision and reliability of a rotary indexing table with the flexibility of a transfer system.

SIMPLE MOTION PRINCIPLE -
 HIGH LEVEL OF AVAILABILITY

What does not exist cannot break down. The simple and precise motion principle of the transport cam and the modular cell design considerably reduce the number of mechanical and electrical components. The availability of the LS 280 increases to the same degree. The single cells are uncoupled through "intelligent" belt sections.
Short idle times between these assembly cells can be compensated by small buffers.

MODULAR SYSTEM DESIGN LOWER INVESTMENT COSTS

The LS 280 is based on a clear modular cell design. The elaborate design with a low number of components offers solutions of great simplicity and elegance - tailored for individual requirements. Additional components for stopping and indexing of the carriers are not required. The clearly defined cell modules keep labour costs low for build-up and start-up. Stability and reliability allow a three-shift operation with a minimum of service staff

ADJUSTMENT OF VARYING PROCESSING TIMES INCREASE OF PRODUCTIVITY

On a rotary indexing table, the longest processing time determines the cycle time of the system. The LS 280 however, allows the combination of different indexing pitches within one system through the simultaneous transfer of several workpiece carriers to execute time consuming operations parallel in line. Without elaborate lock out different processing times can be decoupled integrated to achieve a higher production output. The fast total frequency of the system remains in place.

MAINTENANCE-FREE OPERATION HIGH RELIABILITY

The LS 280 allows a fully automatic and maintenance-free three shift operation due to hardened and ground motion tracks in connection with an integrated central lubrication system as well as ball bearing rollers at the workpiece carrier. The monitoring functions integrated in the control guarantee the maximum degree of operation reliability.
or to the approach to the cam intake to one-hundredth in comparison with normal transport. This ensures that vibrations are avoided at the customer product.

JERK AND IMPACT-FREE CARRIER TRANSPORTATION NO VIBRATIONS AT THE CUSTOMER PRODUCT

The modified sinusoidal motion sequence within the transport cam together with the speed controlled belt sections in front of a cell provide transport through the system that is continuously smooth and impact-free. The frequency controlled belt drive smooth and inpact-free. The frequency controlled belt drive unit reduces the transport energy of the workpiece carrier pri-

COMPARISON OF WORKPIECE EXCHANGE TIMES

TIME AND LAYOUT EXAMPLE OF A LS 280 WITH DIFFERENT CUSTOMER PROCESSING TIMES AT THE INDIVIDUAL ASSEMBLY CELLS

Indexing pitch of the cell (mm)	Workpiece exchange time (sec.)	Processing time customer (sec.)	Cycle time of a cell (sec.)	Resulting cycle time per part (sec.)
$\mathbf{7 0}$	$\mathbf{0 . 4}$	$\mathbf{0 . 8}$	$\mathbf{1 . 2}_{(\mathbf{1})}$	$\mathbf{1 . 2}$
140	0.5	1.9	$2_{(2)}$	1.2
$\mathbf{2 8 0}$	$\mathbf{0 . 6}$	$\mathbf{4 . 2}$	$\mathbf{4 . 8}(\mathbf{3})$	$\mathbf{1 . 2}$

(1) sequential processing per part
(2) parallel processing at 2 parts
(3) parallel processing at 4 parts

ESD-CAPABILITY - ANTISTATIC TRANSPORT

There is no electrostatic charging due to the continuous steel design of the system which ensures that every workpiece carrier is earthed.

INDEPENDENTLY FUNCTIONAL ASSEMBLY CELLS FLEXIBLE AND EXTENDABLE SYSTEM DESIGN

The LS 280 is designed mechanically as well as from the contro side as a cell concept. The single assembly cells contain decentralised control packages, which communicate with the PLC by a system bus. This ensures that subsequent extensions to a system or a division of a total system into separate sub-systems are possible without any problems. The stable basic design of the cells also ensures that no adjustments are required after the re-assembly.

SHORT REALISATION TIMES - TIME TO MARKET

Complete base machines can be set up with just a few stockable standard components in a very short time. Each system is performance tested and quality controlled prior to delivery. The parameter set of the system is therefore already individually adjusted and optimised

We manufacture the mechanical interfaces such as mounting plates, workpiece carrier plates etc. according to customer drawings. The autonomous working assembly cells even allow the split-up of the work content to several suppliers. The above issues result in a time saving of several weeks for the customer.

The locking stations serve primarily for simultaneous transport and positioning of a number of workpiece carriers.
Depending on the indexing pitch and station type, the user has a varying number of locked processing positions at his disposal.
Along with stable steel base frames and top support plates the locking stations form the basis of an assembly cell of the Linear Assembly System LS 280.

The main item of the stations is formed by a cylindrical cam with which the workpiece carriers are engaged, transported and mechanically locked in a single motion sequence. This reliable drive principle enables shortest workpiece exchange times combined with a high positioning accuracy.

Single locking station

The locking stations are also designed to provide a mounting surface for handling modules, which are directly mounted on top of the assembly cell.

Despite working at high speed, the sinusoidal motion curve within the cylindrical cam guarantees a smooth, impact-free transportation of the workpiece carriers and therefore avoid vibrations at the transported product.

Two versions of the locking stations are available, single and double locking station. Both modules have the same drive concept, but differ through the number of available locked positions and the module length of 1200 mm or 2400 mm .

A twin cell configuration provides two independent working locking stations mounted back to back on one base frame. A common bigger top support plate is used in this case.

Double locking station

The top support plates are made of anodised aluminium or nickel-plated steel in the standard version. They can also be manufactured in accordance with customer specifications.

"One-sided" top support plate with standard hole pattern

"Twin" top support plate with standard hole pattern

TECHNICAL DATA OF THE LOCKING STATIONS

Indexing pitch of the cell (mm)	Workpiece exchange time (sec.)	Number of available locked positions at each indexing pitch: Double locking station	
$\mathbf{7 0}$	$\mathbf{0 . 4}^{*}$	$\mathbf{1 0}$ positions	$\mathbf{2 8}$ positions
140	0.5^{*}	5 positions	14 positions
$\mathbf{2 8 0}$	$\mathbf{0 . 6 *}$	$\mathbf{3}$ positions	$\mathbf{7}$ positions
560	1.2^{*}	2 positions (1×2 pos. parallel)	6 positions $(3 \times 2$ pos. parallel)

* Time from input of the start signal in the control of the cell to the output of the position signal from the control system.

Positioning precision:	X / Y axis $+/-0.03 \mathrm{~mm}$ Z axis: $+/-0.06 \mathrm{~mm}$
Transport direction:	Counter-clockwise
Type of drive:	Three-phase motor

CELL WITH SINGLE LOCKING STATION - AVAILABLE LOCKED POSITIONS

Stationary and rotating plates according to customer drawings form part of our scope of delivery and are offered separately.

CELL WITH TWO SINGLE LOCKING STATIONS - TWIN ARRANGEMENT
Stationary and rotating plates according to customer drawings form part of our scope of delivery and are offered separately.

CELL WITH DOUBLE LOCKING STATION - AVAILABLE LOCKED POSITIONS
Stationary and rotating plates according to customer drawings form part of our scope of delivery and are offered separately.

Indexing pitch: 70

| 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 |

Number of available locked positions at each cycle

CELL WITH TWO DOUBLE LOCKING STATIONS - TWIN ARRANGEMENT
Stationary and rotating plates according to customer drawings form part of our scope of delivery and are offered separately.

BELT SECTION

The belt sections are used for the transport of the workpiece carriers between locking stations. This ensures a decoupling of the individual cell modules and also serves as a small buffer between the processing stations. The workpiece carriers are friction driven on a transport belt. The belt sections are available in different lengths for individual layouts.
The outgoing belt section after a locking station runs with constant high speed while the ingoing belt section in front of a locking station is always speed controlled. This provides a rapid and impactfree transportation of the workpiece carriers between stations.

Belt section with toothed transport belt

The high transport speeds also ensure a reduced number of required workpiece carriers on the free belt sections. The integrated control functions to regulate the transport speed as well as the weight independent pressing force of the carrier to the toothed transport belt, guarantee that wear is kept to a minimum.

Driving unit with motor

TECHNICAL DATA OF THE BELT SECTION

Belt section lengths:	$600,1200,1500,1800,2400 \mathrm{~mm}$
Min. length between two cells:	1200 mm
Transport speeds:	$19 \mathrm{~m} / \mathrm{min} ; 26 \mathrm{~m} / \mathrm{min} ; 41 \mathrm{~m} / \mathrm{min}$ (at 50 Hz) (reduced speeds possible by additional feed rate reduction)
Toothed transport belt:	PU-belt, Nylon coated
Type of drive:	Three-phase motor

180° and 90° corner units are available for the design of the system layout. They determine the geometric execution of the two possible layout types.

Example of 180° system layout

The workpiece carriers are friction driven on the anodised aluminium disk.

TECHNICAL DATA OF THE CORNER UNITS

Transport speeds:	$15 \mathrm{~m} / \mathrm{min} ; 21 \mathrm{~m} / \mathrm{min} ;$
	$34 \mathrm{~m} / \mathrm{min}($ at 50 Hz$)$
Type of drive:	Three-phase motor

WORKPIECE CARRIER

The workpiece carrier train consists of two workpiece carriers linked together by a connection rod. This forms the basis of the fixture of the workpiece. With longer workpieces the two carriers are linked together by a common carrier plate.
The workpieces are guided on a continuous hardened and ground steel guide rail. On belt sections and corner units transport is provided by friction via a spring loaded plastic

shoe which is fitted to the underside of the workpiece carrier. This shoe exerts a constant pressure on the transport belts and corner units. Inside the locking station the workpiece carriers are moved and precisely positioned with the transport cam by the engagement of a cam roller.

Workpiece carrier train with one common carrier plate

DIMENSIONS

Dimensions of the workpiece carrier train

Note:

The design of the workpiece carrier pin holes enables the manual fitting of the carrier plate or the fixture. The mounting pins have a press fit in the carrier plate and a sliding fit in the workpiece carrier.

CARRIER PLATE

The carrier plates are designed to carry the product fixture of the customer. They project outwards over the carrier basic body and form the outermost contour of the system.

Carrier plate with standard hole pattern

This design allows accessibility to the product from underneath as well as the possibility to support by vertical process forces. Components can also be suspended outside or through the carrier plates.

Carrier plate with customer-specific hole pattern

TECHNICAL DATA OF THE CARRIER PLATES

Material:	Steel, chemically nickel-plated
Standard dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$):	$200 \times 160 \times 5 \mathrm{~mm}$ (for pitch 140, 280,560)
	$270 \times 160 \times 5 \mathrm{~mm}$ (for pitch 70, 140, 280, 560)
	$480 \times 160 \times 6 \mathrm{~mm}$ (for pitch 560 / common carrier plate) (other dimensions and designs on request)
Payload:	The maximum payload depends on the location of the customer fixture on the carrier plate and the cycle time of the system. The maximum payload is 4 kg .

SUPPORT IN THE CASE OF VERTICAL PROCESS FORCES

If vertical process forces occur in an application, for example when joining components, the carrier plates must be relieved by a stationary support from below. The carrier plates, which have an additional hardened rail underneath are driven to the
stationary cam rollers in the required positions. This type of support can take vertical process forces of up to approx. 3000 N. Depending on the point of force transmission, the supports in the outer area can be individually designed.

[^8]

BASE FRAME WITH ACCESSORIES

The stable steel base frames form the basis for the locking stations of the linear Assembly System LS 280. Handling modules can be installed directly on the locking stations and require no further supporting structure.
The working height of the assembly cell is 1020 mm . The frame height can also be adapted in accordance with customer specifications. If the locking station is integrated into an existing customer machine frame, the frame feet can be dispensed with and the station is supplied on a flat base frame.

"Side" assembly plate with standard hole pattern

A high-quality switch cabinet is available for the cells, which is precisely integrated at the front or rear side of the base frames. The cabinet has the dimensions: $788 \times 630 \times 300 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$.

When using a side assembly plate it must be noted that the switch cabinet can only be opened if the plate is mounted in the uppermost position (dimension $X=200 \mathrm{~mm}$ between upper edge of the mounting plate and upper edge of the carrier plate).

[^9]The base frame legs are machined flat on the front and rear sides complete with a standard fixing hole pattern. This allows for the fixing of optionally available aluminium side assembly plates. The fixing holes are precisely machined in steps of 50 mm to provide height adjustment.

In order to ensure reliable, wear-free operation of the system, the guide rail tracks and transport cams are automatically lubricated

Central lubrication unit

by the integrated central lubrication unit. The lubrication quantity and intervals are preset prior to delivery.

Lubrication point in guide rail

MANUAL OPERATIONS

With processes that are difficult to automate, with fluctuating or uncertain production quantities, the user has the possibility to execute manual operations at a cell module.
With increasing production quantities, the manual operations

Footboard integrated in the base frame (optionally available)

can be replaced by automated process stations, without mechanical modifications at the cell module.
Optionally, a height-adjustable footboard can be integrated into the base frame of this cell module.

CONTROL SYSTEM

- One master PLC per LS 280 basic machine
- Decentralised control packages per assembly cell
- Cell communication via system bus

- Fieldbus interfaces for customer interface
- W.A.S. 2 LS software

CELL WIRING

The wiring concept follows the decentralised cell structure of the LS 280 and has a standardised "WEISS" design, based on DIN EN 60204. Basic commissioning of the LS 280 is therefore already performed in the factory, which secures a faster start-up on the customer's premises.

The solution includes:

- Creation of a project-specific circuit diagram
- Wiring of the LS components in the local cell control cabinet of the respective LS cell
- Installation of the wiring in line with WEISS specifications with individual core and cable labelling, including the connec-
 tion points on the control cabinets
- Installation of electrical interfaces within the LS 280 wiring at the mechanical interfaces of the transport units
- Commissioning and test run of the LS 280 with control system

SAFETY AND SERVICE

- Frequency converter with integrated Safe Torque Off restart lock (SIL2, PL"d")
- Depending on the brand, configuration and wiring of the frequency converter, Safe Torque Off (SIL3, PL "e") can also be achieved
- Comprehensive monitoring functions
- Remote maintenance
- Global service

DIMENSIONS - LS 280 ASSEMBLY CELL WITH SINGLE LOCKING STATION

DIMENSIONS - LS 280 ASSEMBLY CELL WITH TWIN LOCKING STATION

DIMENSIONS - LS 280 ASSEMBLY CELL WITH TWO SINGLE LOCKING STATIONS IN TWIN ARRANGEMENT

DIMENSIONS - LS 280 ASSEMBLY CELL WITH TWO DOUBLE LOCKING STATIONS IN TWIN ARRANGEMENT

LAYOUT EXAMPLES FOR 180° SYSTEM

Number of locked workpiece positions: 21 Indexing pitches used: $140 \mathrm{~mm}, 280 \mathrm{~mm}$ Space requirement of the basic machine $(L \times W): 4.8 \mathrm{~m} \times 0.9 \mathrm{~m}$

Number of locked workpiece positions: 34 Indexing pitches used: $140 \mathrm{~mm}, 280 \mathrm{~mm}$ Space requirement of the basic machine ($\mathrm{L} \times \mathrm{W}$): $7.2 \mathrm{~m} \times 1.1 \mathrm{~m}$

[^10]Number of locked workpiece positions: 16 Indexing pitches used: $140 \mathrm{~mm}, 280 \mathrm{~mm}$ Space requirement of the basic machine $(L \times W): 7.2 m \times 1.4 m$

Number of locked workpiece positions: 64
Indexing pitches used: $70 \mathrm{~mm}, 140 \mathrm{~mm}, 280 \mathrm{~mm}$
Space requirement of the basic machine
($\mathrm{L} \times \mathrm{W}$): $8.4 \mathrm{~m} \times 1.4 \mathrm{~m}$

LAYOUT EXAMPLES 90° SYSTEM

Number of locked workpiece positions: 21 Indexing pitches used: $140 \mathrm{~mm}, 280 \mathrm{~mm}$ Space requirement of the basic machine $(L \times W): 4.8 \mathrm{~m} \times 2.3 \mathrm{~m}$

Number of locked workpiece positions: 26
Indexing pitches used: 280 mm
Space requirement of the basic machine
($\mathrm{L} \times \mathrm{W}$): $9.6 \mathrm{~m} \times 3.2 \mathrm{~m}$
Indexing pitch: 280

[^11]

HANDLING MODULES

HP

HANDLING MODULES | HP PICK \& PLACE

HP PICK \& PLACE: THE DIRECT ALTERNATIVE

THE SOLUTION FOR CLEANROOMS

The HP 140T CL 6 Pick \& Place has been designed for use in cleanrooms and is certified to air purity class 6 in line with ISO 14644-1.

FREELY AND INTUITIVELY PROGRAMMABLE

W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

Automated assembly system for electromechanical sensors from UBH Mechanical Engineering: eleven Pick \& Place units achieve the required repeat accuracy of 0.02 mm - at a cycle time of 1.5 s .

Whether HP 140 or HP 70: The Pick \& Place from WEISS works with two linear axes and therefore profit from all advantages of a direct drive: rapid dynamic performance, free user-programmability, minimal wear and highest precision. The HP overcomes limits of traditional pneumatic systems regarding variability, dynamic performance and efficiency.

ADVANTAGES

Extremely high dynamic performance thanks to direct drive
Ready-to-install complete solution
Free programmability
Permanent feedback of position, process forces, speed (adjustable control circuit)

Low maintenance costs
Significantly lower energy consumption, in particular in comparison with pneumatic systems
Very compact and slim design, offering greater flexibility for integration and assembly of the machine
W.A.S. 2 - WEISS Application Software for simple commissioning

GENERAL INFORMATION

All motors are equipped with overtemperature protection (PTC)

OPTIONS

The Pick \& Place units can be equipped with manual or automatic lubrication

For efficient cable laying to the screw-on surface, the HP units can optionally be equipped with a tool connector. In addition to this, up to 2 valves can be installed directly in the housing (screwed down to the tool connector)

Absolute measuring systems
Functional safety (secure encoder attachment)

HP 70T

GENERAL INFORMATION

- The HP 70 can be used in any installation situation and therefore offers a maximum degree of flexibility

Drawings of the HP 70 for custom installation locations are available on request

OPTIONS

The Pick\&Place unit can optionally be supplied with a clamping element for the y-axis and z-axis

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\mathbf{M a x}}$	Max. speed:	$3.6 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	65 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	180 N
$\mathbf{s}_{\mathbf{h ~ M a x}}$	Horizontal stroke:	$125,225,325 \mathrm{~mm}$
$\mathbf{s}_{\mathbf{v} \text { Max }}$	Vertical stroke:	70 mm
\mathbf{m}	Weight:	9 kg
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	1 kg

MECHANICAL STROKE

LOAD DATA

$\mathbf{M}_{\mathbf{X} \text { stat }}$	Max. static moment about the X-axis:	61 Nm
$\mathbf{M}_{\mathbf{Y}_{\text {stat }}}$	Max. static moment about the Y-axis:	41 Nm
$\mathbf{M}_{\mathbf{Z}_{\text {stat }}}$	Max. static moment about the Z-axis:	120 Nm
$\mathbf{F}_{\mathbf{Y} \text { stat }}$	Max. static force in the Y-axis:	100 N
$\mathbf{F}_{\mathbf{Z} \text { stat }}$	Max. static force in the Z-axis:	100 N

Please do not exceed the given forces - especially during pick or place operations. The accuracy is given for constant temperature and without outside forces.

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

DIMENSIONS

HP 140T

GENERAL INFORMATION

The HP140 is only suitable for horizontal installation

OPTIONS

The Pick\&Place unit can optionally be designed with a clamping element for the z-axis

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\mathbf{M a x}}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N ~ m o t}}$	Nominal force:	$100 \mathrm{~N}(\mathrm{Y}), 150 \mathrm{~N}(\mathrm{Z})$
$\mathbf{F}_{\mathbf{P} \text { mot }}$	Peak force:	$240 \mathrm{~N}(\mathrm{Y}), 370 \mathrm{~N}(\mathrm{Z})$
$\mathbf{s}_{\mathbf{h ~ M a x}}$	Horizontal stroke:	$160,215,270,300,400 \mathrm{~mm}$
$\mathbf{s}_{\mathbf{v} \text { Max }}$	Vertical stroke:	$65,100,150 \mathrm{~mm}$
\mathbf{m}	Weight:	$11-18 \mathrm{~kg}$
	Installation position::	horizontal
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	3 kg

LOAD DATA

$\mathbf{M}_{\mathbf{x} \text { stat }}$	Max. static moment about the X-axis:	49 Nm
$\mathbf{M}_{\mathbf{Y}_{\text {stat }}}$	Max. static moment about the Y-axis:	15 Nm
$\mathbf{M}_{\text {z stat }}$	Max. static moment about the Z-axis:	36 Nm
$\mathbf{F}_{\mathbf{Y} \text { stat }}$	Max. static force in the Y-axis:	100 N
$\mathbf{F}_{\text {Z stat }}$	Max. static force in the Z-axis:	100 N

Please do not exceed the given forces - especially during pick or place operations. The accuracy is given for constant temperature and without outside forces.

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

TIMING DIAGRAM To help calculate the exact cycle time, please forward your proposed sequence.

DIMENSIONS

Connection dimensions for tool connector

Vertical stroke	\mathbf{B}	\mathbf{B}_{1}
$\mathbf{6 5}$	$\mathbf{4 7 8}$	$\mathbf{2 9 6 . 5}$
100	581	371.5
$\mathbf{1 5 0}$	$\mathbf{6 5 3}$	$\mathbf{4 7 1 . 5}$

Horizontal stroke	A		
$\mathbf{1 6 0}$	$\mathbf{4 0 2}$	${ }^{*}$	
270	512	${ }^{*}$	
$\mathbf{3 0 0}$	$\mathbf{5 4 2}$	${ }^{*}$	
400	642	${ }^{*}$	

HL

LINEAR MOTOR AXES |HL LINEAR AXIS

Various strokes up to 450 mm

THE HIGHLY DYNAMIC LINEAR MOTOR AXIS HL

OPTIONS AVAILABLE

Tool connector; electrical and pneumatic supply is accessible
Automatic grease pump for applications without maintenance

FREELY AND INTUITIVELY PROGRAMMABLE
W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

OKU relies on the perfect combination of HN and HL axes for its ball bearing assembly cell. User-programmable linear motor axes are the ideal choice for extremely fast process movements and strict requirements in terms of both dynamic performance and precision.

The linear motor axis HL provides, without any doubt, the most modern drive technology which is highly integrated and ready to mount. Tight and precise recirculating ball bearings and an absolute measurement system as well as the automatic lubrication are all included in this product. The result: Rapid and harmonic movements, horizontal or vertical mounting and loading on the right or left side is possible.

ADVANTAGES

User programmable
Extremely high dynamic performance thanks to direct drive

- Long lifetime
- Low maintenance costs
- Low energy costs
- Compact design - low weight
- Stiff mechanical assembling
- Very good repeat accuracy

GENERAL INFORMATION

In the HL model range, as little mass as possible is moved due to the moving guide rail. The axes then meet the requirements of vertical ap-plications very efficiently

All motors are equipped with overtemperature protection (PTC)

The installation location of the HL axes can be freely chosen

OPTIONS

Absolute measuring systems

Holding brake
The linear axes can be equipped with manual or automatic lubrication

Functional safety (secure encoder attachment)

HL 50A

TECHNICAL DATA

U	Voltage range:	200-600 $\mathrm{V}_{\text {AC rms }}$
$\mathbf{U}_{\text {Pruif }}$	Test bench:	$800 \mathrm{~V}_{\text {AC }}$
$\mathrm{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}_{\mathrm{N} \text { mot }}$	Nominal force:	65 N
$\mathrm{F}_{\mathrm{P} \text { mot }}$	Peak force:	180 N
I_{N}	Nominal current:	2.4 A
I_{p}	Peak current:	6 A
$\mathrm{s}_{\text {Max }}$	Max. stroke:	$150-400 \mathrm{~mm}$
$\mathbf{S}_{\text {red }}$	Reduced stroke with brake:	49 mm
	Repeat accuracy:	0.005 mm
$\mathrm{m}_{\text {rec }}$	Max. recommended load:	4 kg
$\mathrm{m}_{\text {gui } 0}$	Mass of the guide rail with 0 mm stroke:	0.7 kg
$\mathbf{m}_{\text {gui } 100}$	Mass of the guide rail per 100 mm stroke:	0.3 kg
$\mathrm{m}_{\text {carr }}$	Mass of the carriage with motor:	2.1 kg
$\mathbf{m}_{\text {carr FI }}$	Mass of the carriage with motor and flange:	2.2 kg
$\mathrm{mbr}_{\text {br }}$	Mass of the brake:	0.4 kg
F_{Br}	Brake force:	145/250 N
p_{Br}	Opening pressure:	4/6 bar

LOAD DATA

TIMING DIAGRAM

Stroke without brake in mm	Stroke with 1 brake in mm	Dimension L in mm	Dimension A in mm
150^{*}	100	312	420
200	150	361	469
250	200	410	518
300^{*}	250	462	570

* Standard stroke

DIMENSIONS

Optionally with holding_brake

HL 100A

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{U}_{\text {Prü }}$	Test bench:	$800 \mathrm{~V}_{\mathrm{AC}}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	150 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	380 N
$\mathbf{I}_{\mathbf{N}}$	Nominal current:	3.6 A
$\mathbf{I}_{\mathbf{p}}$	Peak current:	9.5 A
$\mathbf{s}_{\text {Max }}$	Max. stroke:	$150-530 \mathrm{~mm}$
$\mathbf{S}_{\text {red }}$	Reduced stroke with brake:	40 mm
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	8 kg
$\mathbf{m}_{\text {gui } \mathbf{0}}$	Mass of the guide rail with 0 mm stroke:	1.8 kg
$\mathbf{m}_{\mathbf{g u i} 100}$	Mass of the guide rail per 100 mm stroke:	0.6 kg
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	3.6 kg
$\mathbf{m}_{\text {carr Fl }}$	Mass of the carriage with motor and flange:	4 kg
$\mathbf{m}_{\text {br }}$	Mass of the brake:	0.5 kg
$\mathbf{F}_{\mathbf{B r}}$	Brake force:	350 N
$\mathbf{p}_{\text {Br }}$	Opening pressure:	6 bar

LOAD DATA

TIMING DIAGRAM

Stroke without brake in mm	Stroke with 1 brake in mm	Dimension L in mm	Dimension A in mm
150^{*}	110	326	453
190	150	365.5	492.5
230	190	405	532
300^{*}	260	476	603
340	300	515.5	642.5
380	340	555	682
450^{*}	410	626	753

* Standard stroke

DIMENSIONS

Optionally with holding brake

HG/HN

HN

HG/HN LINEAR MOTOR AXES

TWO SIZES

The two sizes of the HG axis: HG 25 with a peak force of 180 N , and HG 12 with a peak force of 110 N

FREELY AND INTUITIVELY PROGRAMMABLE
W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

OKU relies on the perfect combination of HN and HL axes for its ball bearing assembly cell. User-programmable linear motor axes are the ideal choice for extremely fast process movements and strict requirements in terms of both dynamic performance and precision.

The latest in uncompromising, highly dynamic drive technology for your basic axis. Highly integrated and ready for installation. Compact and precise ball-type linear guides and an absolute measuring system are just as much a part of the concept as the automatic lubrication. The HN version is available in many different sizes - with a robust steel body or lightweight aluminium body. The aluminium profile-based HG axes can also be used in areas in which cost factors have typically made conventional drives the standard choice in the past: the most advanced linear technology at extremely attractive conditions. Both versions impress with their smooth movements and maximum dynamics.

ADVANTAGES

Freely positionable
Extremely high dynamic performance thanks to direct drive
Low maintenance costs
Low energy costs
Compact design

- Convincing price-quality ratio
(particularly in the case of HG axes)
HN axes with high power density available in many different sizes

HG axes with covered guide profile with standard attachment options

GENERAL INFORMATION

The HG model range comes with lifetime lubrication, making maintenance intervals a thing of the past.

All motors are equipped with overtemperature protection (PTC)
The installation location of the linear axes can be freely chosen

OPTIONS

The HN linear axes can be equipped with manual or automatic lubrication

Multiple carriages on a single axis
Absolute measuring systems
Functional safety (secure encoder attachment)

HG 12A

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	33 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	102 N
$\mathbf{I}_{\mathbf{p}}$	Peak current:	2 A
	Temperature monitoring:	PTC
$\mathbf{s}_{\mathbf{M a x}}$	Max. stroke:	bis 1000 mm in 100 mm
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	5 kg
$\mathbf{m}_{\text {gui } \mathbf{0}}$	Mass of the guide rail with 0 mm stroke:	1.44 kg
$\mathbf{m}_{\text {gui 100 }}$	Mass of the guide rail per 100 mm stroke:	0.72 kg
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	1.45 kg

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI
Balluff (Rockwell, Mitsubishi)	TTL

LOAD DATA

TIMING DIAGRAM

DIMENSIONS

$X-X(1: 1)$

Standardhübe	A	B
$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{8 0}$
200	400	130
$\mathbf{3 0 0}$	$\mathbf{5 0 0}$	$\mathbf{1 8 0}$
400	600	230
$\mathbf{5 0 0}$	$\mathbf{7 0 0}$	$\mathbf{2 8 0}$
600	800	330
$\mathbf{7 0 0}$	$\mathbf{9 0 0}$	$\mathbf{3 8 0}$
800	1000	430
$\mathbf{9 0 0}$	$\mathbf{1 1 0 0}$	$\mathbf{4 8 0}$
1000	1200	530

HG 25A

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\text {AC rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	65 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	180 N
$\mathbf{I}_{\mathbf{p}}$	Peak current:	6 A
	Temperature monitoring:	PTC
$\mathbf{s}_{\text {Max }}$	Max. stroke:	bis 1000 mm in 100 mm
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	10 kg
$\mathbf{m}_{\text {gui 0 }}$	Mass of the guide rail with 0 mm stroke:	2.24 kg
$\mathbf{m}_{\text {gui } 100}$	Mass of the guide rail per 100 mm stroke:	1 kg
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	2.05 kg

ENCODER

Balluff	$\sin / c o s$
Balluff	BISS
Balluff	SSI
Balluff (Rockwell, Mitsubishi)	TTL

TIMING DIAGRAM

DIMENSIONS

$X-X(1: 1)$

Standardhübe	A	B
$\mathbf{1 0 0}$	$\mathbf{3 2 4}$	$\mathbf{7 9 , 5}$
200	424	129,5
$\mathbf{3 0 0}$	$\mathbf{5 2 4}$	$\mathbf{1 7 9 , 5}$
400	624	229,5
$\mathbf{5 0 0}$	$\mathbf{7 2 4}$	$\mathbf{2 7 9 , 5}$
600	824	329,5
$\mathbf{7 0 0}$	$\mathbf{9 2 4}$	$\mathbf{3 7 9 , 5}$
800	1024	429,5
$\mathbf{9 0 0}$	$\mathbf{1 1 2 4}$	$\mathbf{4 7 9 , 5}$
1000	1224	529,5

HN 50

TECHNISCHE DATEN

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	65 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	180 N
$\mathbf{I}_{\mathbf{p}}$	Peak current:	6 A
$\mathbf{s}_{\mathbf{M a x}}$	Max. stroke:	bis 1000 mm in 100 mm
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	15 kg
$\mathbf{m}_{\text {gui 0 }}$	Mass of the guide rail with 0 mm stroke:	2.51 kg (Alu)
$\mathbf{m}_{\text {gui 100 }}$	Mass of the guide rail per 100 mm stroke:	0.83 kg (Alu)
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	2.2 kg (Alu)

LOAD DATA (static)

$\mathbf{M}_{\mathbf{x} \text { sat }}$	Max. static moment about the X-axis:	200 Nm
$\mathbf{M}_{\mathbf{y} \text { stat }}$	Max. static moment about the Y-axis:	50 Nm
$\mathbf{M}_{\mathbf{Z} \text { sat }}$	Max. static moment about the Z-axis:	200 Nm
$\mathbf{F}_{\mathbf{X} \text { stat }}$	Max. static force in the Y-axis:	250 N
$\mathbf{F}_{\mathbf{Z} \text { stat }}$	Max. static force in the Z-axis:	500 N

LOAD DATA (dynamic)

$\mathbf{M}_{\mathbf{x} \text { dyn }}$	Max. dynamic moment about the X-axis:	20 Nm
$\mathbf{M}_{\mathbf{y} \text { dyn }}$	Max. dynamic moment about the Y-axis:	10 Nm
$\mathbf{M}_{\mathbf{Z} \text { dyn }}$	Max. dynamic moment about the Z-axis:	20 Nm
$\mathbf{F}_{\mathbf{X} \text { dyn }}$	Max. dynamic force in the X-axis:	100 N
$\mathbf{F}_{\mathbf{Z} \text { dyn }}$	Max. dynamic force in the Z-axis:	150 N

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

TIMING DIAGRAM

DIMENSIONS

Standard strokes (Examples)	\mathbf{A}	A1	A2	A3
$\mathbf{3 0 0}$	$\mathbf{7 3 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{5 3 0}$
500	930	115	65	700
$\mathbf{1 0 0 0}$	$\mathbf{1 4 3 0}$	$\mathbf{1 1 5}$	$\mathbf{7 5}$	$\mathbf{1 2 0 0}$

[^12]
HN 100

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\mathbf{M a x}}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	150 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	380 N
$\mathbf{I}_{\mathbf{p}}$	Peak current:	9.5 A
$\mathbf{s}_{\text {Max }}$	Max. stroke:	bis 1000 mm in $100 \mathrm{~mm} ;$ $>1000 \mathrm{~mm}$ auf Anfrage
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	25 kg
$\mathbf{m}_{\text {gui 0 }}$	Mass of the guide rail with 0 mm stroke:	5.59 kg (Alu)
$\mathbf{m}_{\text {gui 100 }}$	Mass of the guide rail per 100 mm stroke:	1.61 kg (Alu)
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	4.7 kg (Alu)

LOAD DATA (static)

$\mathbf{M}_{\mathbf{x} \text { sat }}$	Max. static moment about the X-axis:	350 Nm
$\mathbf{M}_{\mathbf{Y} \text { stat }}$	Max. static moment about the Y-axis:	100 Nm
$\mathbf{M}_{\mathbf{Z} \text { stat }}$	Max. static moment about the Z-axis:	350 Nm
$\mathbf{F}_{\mathbf{X} \text { stat }}$	Max. static force in the Y-axis:	500 N
$\mathbf{F}_{\text {Z stat }}$	Max. static force in the Z-axis:	750 N

LOAD DATA (dynamic)

$\mathbf{M}_{\mathbf{x d y n}}$	Max. dynamic moment about the X-axis:	40 Nm
$\mathbf{M}_{\mathbf{Y} \text { dyn }}$	Max. dynamic moment about the Y-axis:	15 Nm
$\mathbf{M}_{\mathbf{Z} \text { dyn }}$	Max. dynamic moment about the Z-axis:	40 Nm
$\mathbf{F}_{\mathbf{X d y n}}$	Max. dynamic force in the X-axis:	150 N
$\mathbf{F}_{\mathbf{Z} \text { dyn }}$	Max. dynamic force in the Z-axis:	150 N

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

TIMING DIAGRAM

DIMENSIONS

| Standard strokes (Examples) | \mathbf{A} | $\mathbf{A 1}$ | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 0 0}$ | $\mathbf{7 8 0}$ | $\mathbf{9 0}$ | $\mathbf{7 0}$ | $\mathbf{6 0 0}$ |
| 1000 | 1280 | 140 | 80 | 1000 |

[^13]
HN 200

TECHNICAL DATA

\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { rms }}$
$\mathbf{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$\mathbf{v}_{\mathbf{M a x}}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{\mathbf{N} \text { mot }}$	Nominal force:	250 N
$\mathbf{F}_{\mathbf{P}_{\text {mot }}}$	Peak force:	700 N
$\mathbf{I}_{\mathbf{p}}$	Peak current:	11.2 A
$\mathbf{s}_{\text {Max }}$	Max. stroke:	bis 1000 mm in $100 \mathrm{~mm} ;$ $>1000 \mathrm{~mm}$ auf Anfrage
	Repeat accuracy:	0.005 mm
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	50 kg
$\mathbf{m}_{\text {gui 0 }}$	Mass of the guide rail with 0 mm stroke:	9.59 kg (Alu)
$\mathbf{m}_{\text {gui 100 }}$	Mass of the guide rail per 100 mm stroke:	2.22 kg (Alu)
$\mathbf{m}_{\text {carr }}$	Mass of the carriage with motor:	8.1 kg (Alu)

LOAD DATA (static)

$\mathbf{M}_{\mathbf{x} \text { sat }}$	Max. static moment about the X-axis:	500 Nm
$\mathbf{M}_{\mathbf{y} \text { stat }}$	Max. static moment about the Y-axis:	200 Nm
$\mathbf{M}_{\mathbf{Z} \text { sat }}$	Max. static moment about the Z-axis:	500 Nm
$\mathbf{F}_{\mathbf{X} \text { stat }}$	Max. static force in the Y-axis:	750 N
$\mathbf{F}_{\text {Zstat }}$	Max. static force in the Z-axis:	1000 N

LOAD DATA (dynamic)

$\mathbf{M}_{\mathbf{x} \text { dyn }}$	Max. dynamic moment about the X-axis:	80 Nm
$\mathbf{M}_{\mathbf{r} \text { dyn }}$	Max. dynamic moment about the Y-axis:	40 Nm
$\mathbf{M}_{\mathbf{Z} \text { dyn }}$	Max. dynamic moment about the Z-axis:	80 Nm
$\mathbf{F}_{\mathbf{X} \text { dyn }}$	Max. dynamic force in the X-axis:	250 N
$\mathbf{F}_{\mathbf{Z} \text { dyn }}$	Max. dynamic force in the Z-axis:	500 N

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

TIMING DIAGRAM

DIMENSIONS

| Standard strokes (Examples) | A | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 0 0}$ | $\mathbf{8 5 0}$ | $\mathbf{1 2 5}$ | $\mathbf{8 5}$ | $\mathbf{6 0 0}$ |
| 1000 | 1350 | 125 | 80 | 1100 |

[^14]
HN 400

TECHNICAL DATA

U	Voltage range:	200-600 $\mathrm{V}_{\text {AC rms }}$
$\mathrm{a}_{\text {Max }}$	Max. acceleration:	$40 \mathrm{~m} / \mathrm{s}^{2}$
$v_{\text {Max }}$	Max. speed:	$4 \mathrm{~m} / \mathrm{s}$
$F_{\mathrm{N} \text { mot }}$	Nominal force:	500 N
$\mathrm{F}_{\mathrm{P} \text { mot }}$	Peak force:	1400 N
I_{p}	Peak current:	18 A
$\mathbf{s}_{\text {Max }}$	Max. stroke:	bis 1000 mm in 100 mm ; > 1000 mm auf Anfrage
	Repeat accuracy:	0.005 mm
$\mathrm{m}_{\text {rec }}$	Max. recommended load:	100 kg
$\mathrm{m}_{\text {gui } 0}$	Mass of the guide rail with 0 mm stroke:	15.11 kg (Alu)
$\mathbf{m g u i ~}_{\text {go }}$	Mass of the guide rail per 100 mm stroke:	2.9 kg (Alu)
$\mathrm{m}_{\text {carr }}$	Mass of the carriage with motor:	13.4 kg (Alu)

LOAD DATA (static)

$\mathbf{M}_{\mathbf{x} \text { sat }}$	Max. static moment about the X-axis:	1000 Nm
$\mathbf{M}_{\mathbf{y} \text { stat }}$	Max. static moment about the Y-axis:	500 Nm
$\mathbf{M}_{\mathbf{Z} \text { sat }}$	Max. static moment about the Z-axis:	1000 Nm
$\mathbf{F}_{\mathbf{X} \text { stat }}$	Max. static force in the Y-axis:	1000 N
$\mathbf{F}_{\mathbf{Z} \text { stat }}$	Max. static force in the Z-axis:	1500 N

LOAD DATA (dynamic)

$\mathbf{M}_{\mathbf{x} \text { dyn }}$	Max. dynamic moment about the X-axis:	140 Nm
$\mathbf{M}_{\mathbf{r} \text { dyn }}$	Max. dynamic moment about the Y-axis:	60 Nm
$\mathbf{M}_{\mathbf{Z} \text { dyn }}$	Max. dynamic moment about the Z-axis:	140 Nm
$\mathbf{F}_{\mathbf{X} \text { dyn }}$	Max. dynamic force in the X-axis:	500 N
$\mathbf{F}_{\mathbf{Z} \text { dyn }}$	Max. dynamic force in the Z-axis:	1000 N

ENCODER

Balluff	\sin / \cos
Balluff	BISS
Balluff	SSI

LOAD DATA

TIMING DIAGRAM

DIMENSIONS

| Standard strokes (Examples) | A | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 0 0}$ | $\mathbf{9 3 0}$ | $\mathbf{1 1 5}$ | $\mathbf{6 5}$ | $\mathbf{7 0 0}$ |
| 1000 | 1430 | 115 | 75 | 1200 |

[^15]
SH 75

ROTATING UNITS | SH 75 LIFTING-ROTATING UNIT

SH LIFTINGROTATING UNIT

FREELY AND INTUITIVELY PROGRAMMABLE
W.A.S. 2 - WEISS Application Software: secure and fast commissioning with free-of-charge user software.

Handling unit with independent servo axes for lifting and rotary movements

The resounding success enjoyed by the SH 75 is largely thanks to its versatile and flexible deployment options. The lifting and rotary axes are user-programmable independent of one another - making the axis combination suitable for a wide range of applications, including varying tasks. A high power density, extremely compact dimensions, as well as fast and convenient start-up using the WEISS Application Software are further plus points. The new integrated servo motors have catapulted the unit into new categories of dynamics and precision.

ADVANTAGES

- Compact design with high power density
- Excellent dynamics thanks to use of the latest servo drives
- Flexible deployment options throughout varying tasks/processes
- User programmability of the two independent lifting and rotary axes
- WEISS Application Software (W.A.S. 2) for quick and easy start-up

GENERAL INFORMATION

. The installation location of the SH unit can be freely chosen

- Both the rotary movement and the linear movement are user-programmable
- The lifting-rotating unit can optionally be equipped with a brake
- A clamping set is available for fitting the customer's attachments

SH 75

TECHNICAL DATA

The lifting-rotating unit can be equipped with functional safety (on request)

TECHNISCHE DATEN		
\mathbf{U}	Voltage range:	$200-600 \mathrm{~V}_{\mathrm{AC} \text { ms }}$
$\mathbf{I}_{\mathbf{p}}$	Peak current:	7.6 A
$\mathbf{n}_{2 \text { max }}$	Max. rotation speed:	$220 \mathrm{~min}^{-1}$
$\mathbf{T}_{2 \mathrm{P}}$	Max. acceleration torque:	12 Nm
$\mathbf{v}_{\mathbf{2 \text { Max }}}$	Max. speed:	$0.5 \mathrm{~m} / \mathrm{s}$
$\mathbf{F}_{2 \mathrm{P}}$	Peak force:	1200 N
$\mathbf{s}_{\text {Max }}$	Max. stroke:	75 mm
	Repeat accuracy (rotation):	$180 \mathrm{arcsec}\left(\pm 90^{\prime \prime}\right)$
	Repeat accuracy (stroke):	0.02 mm
$\mathbf{J}_{2 \text { max }}$	Max. intertia:	$0.06 \mathrm{kgm}^{2}$
$\mathbf{m}_{\text {rec }}$	Max. recommended load:	10 kg
$\mathbf{C}_{r 0}$	Concentricity when retracted:	0.06 mm
$\mathbf{C}_{\mathrm{rl5}}$	Concentricity when extended:	0.08 mm

LOAD DATA (on the drive shaft)

$\mathbf{F}_{2 \text { Astat }}$	Static axial force:	1200 N
$\mathbf{F}_{2 \text { Rstat }}$	Static radial force (extended):	500 N
$\mathbf{F}_{2 \text { R stat }}$	Static radial force (retracted):	1500 Nm
$\mathbf{M}_{2 \text { Tstat }}$	Static torque:	10 Nm

ENCODER

Sick	Hiperface

TIMING DIAGRAM

DIMENSIONS

PICK-0-MAT

AUTOMATED ASSEMBLY SYSTEM | PICK-O-MAT AUTOMATED ASSEMBLY SYSTEM

PICK-O-MAT AUTOMATED ASSEMBLY SYSTEM: HIGH-PERFORMANCE AND EASY TO INTEGRATE

THE SIZES

Available in two sizes, the PM 1100 and PM 1500 are the ideal basic machines for your specific application.

PM 1500

Assembly of small parts at Hammermeister Sondermaschinenentwicklung GmbH

The Pick-o-Mat is in a class of its own: the electromechanical automated assembly system unites a rotary indexing table with up to 24 handling, pressing and lifting modules, which are synchronised via a central drive. Different stroke variants can be combined easily. The elegant and powerful drive solution works without pneumatic handling mechanisms and is available in two sizes.

ADVANTAGES

Automated assembly system with rotary indexing table and up to 24 integrated handling, pressing and lifting modules

Central cam drive for all module movements

Powerful, affordable and easy-to-integrate complete solution also available on request with base plate, base frame (SR or SK model range) and control system

CENTRAL DRIVE

360° BARREL CAM ROTATION $=4$ VERTICAL STROKES +2 HORIZONTAL STROKES $=1$ COMPLETE CYCLE

A 360° rotation of the barrel cam of the central drive generates a complete cycle of the pick-and-place units. Lifting and pressing modules are moved by the lower drive disk (only).

Figure 1: Pos. cam cylinder: 0° Pos. manipulator: down-retracted

Figure 2: Pos. cam cylinder: 75° Pos. manipulator: up-retracted

Figure 3: Pos. cam cylinder: 112° Pos. manipulator: up-extended

Figure 4: Pos. cam cylinder: 180° Pos. manipulator: down-extended

TECHNICAL DATA

Repeatability:	$\pm 0.03 \mathrm{~mm}$	Drive of the rotary table and central unit:	AC brake motor
Max. horizontal stroke (handling module):	140 mm		
Max. vertical stroke (handling module):	50 mm	Motor voltage:	$\begin{aligned} & 400 \mathrm{~V} / 50 \mathrm{~Hz} \text { or } \\ & 440-480 \mathrm{~V} / 60 \mathrm{~Hz} \end{aligned}$
Mechanical standard speeds/min. at 50 Hz :	32*, 48*, 60*, 75*	Drive output:	0.25-0.37 kW
Max. handling weight (kg):	2	Monitoring sensor:	24 V, PNP N/O contact

OPTIONS AND ADJUSTMENTS

To complete your Pick-o-Mat, plates and base frames can be manufactured as per your drawings

EF2 frequency converter control system for fast and simple start-up

STANDARDISED YET INDIVIDUAL

Alongside a large variety of parameters for adapting our standard components, we can manufacture the following components for adapting or completing your Pick-o-Mat in accordance with your drawings:

- Base frame with levelling elements for stable mounting of the basic machine (see also SR/SK model line)
- Base plate for mounting the central drive and your additional devices such as feeder equipment
- Rotary plate for mounting your workpiece carriers in accordance with your drilling pattern and with the desired outer diameter
- Adapter plate on the handling module for mounting your grippers

Looking at the CAD models of all standard modules of the Pick-o-Mat which have been made available on our website allows fast and secure project planning and design.

FAST START-UP AND GUARANTEED QUALITY

Every Pick-o-Mat is subjected to comprehensive testing and measurements prior to shipping, guaranteeing seamless integration into your complete system.

SIMPLE AND SECURE CONTROL

An encoder mounted on the cam axis of the central drive transmits the current position. The direct relationship between the rotation angle of the cam and the position of the gripper enables easy and secure control of all other modules within the rotary table.
Alongside the compact control and monitoring components offered by WEISS, the integrated mechanical overload protection ensures the safe operation of your machine.

AFFORDABLE AND QUICKLY AVAILABLE

Thanks to the combination of WEISS components manufactured in large numbers to make up your individual automated assembly systems, we can deliver the entire machine in a very short time and at an unbeatable price.

Application example for the assembly of small parts at Hammermeister Sondermaschinenentwicklung GmbH

PM 1100

TECHNICAL DATA	
Rotary indexing table, basis:	TC 320T (for specifications, see TC-T rotary indexing tables)
Max. number of modules:	16
Number of stations on rotary table:	4 to 36

Diameter of stationary module plate:	760 mm
Diameter of rotary plate:	Standard 1050 mm (other diameters possible)
Available base frames:	SR0200B or SK0300B

The maximum number of modules and the smallest spacing distance possible must be reviewed for each application from a design point of view and depend on the type of module and the desired sequence.

PM 1100E HANDLING MODULE

If required, the vertical guide assembly can be mounted at two heights with a difference of 33 mm (see figures for assembly 1 and assembly 2).

For all stroke variants, the stroke including adjustment limits can only lie within the grey shaded area. For pre-adjustment prior to assembly, the adjusting dimensions \mathbf{H} and \mathbf{V} must be specified when ordering. The final adjustment is performed by the customer after fitting the gripper.

Assembly 1 - bottom vertical rail
Position of the handling unit: top - outside

Assembly 2 - top vertical rail
Position of the handling unit: top - outside

Standard adapter plate ($40 \times 64 \times 8 \mathrm{~mm}$) with drilling pattern ($2 \times$ DRM 5 H7; $2 \times \mathrm{M} 5$) for mounting to the guide (customised configurations possible)

TECHNICAL DATA

Maximum extra weight: $\quad 2 \mathrm{~kg}$ (depending on speed and number of modules)
Standard strokes:

Vertical stroke [mm]	30	40	$50^{* *}$		
of which linear without crossover (approx.) [mm]	25	30	37.5		
Horizontal stroke [mm]	80	90^{*}	100	120	140
of which linear without crossover (approx.) [mm]	65	75	85	100	115

[^16]
PM 1100H LIFTING MODULE

USING THE LIFTING MODULE

The lifting module can be used for the vertical movement of a test medium. In order to avoid crash situations, the test medium must contain a spring-mounted overload protection system that permits max. 50 N spring force and at least 71 mm spring travel.

METHOD OF FUNCTIONING

The lifting module moves simultaneously with the horizontal stroke of the handling module. The downward movement is performed synchronously with the retraction of the handling module.

TECHNICAL DATA

Stroke dependencies [mm]:

Vertical stroke of the handling module	30.0	≥ 40.0
Stroke of the lifting module	58.3	70.0
Bottom position (distance A)	100.0	94.0

PM 1100P PRESSING MODULE

APPLICATION

The pressing module can move the press head to the workpiece to be joined in the vertical direction. In order to avoid crash situations, the press head must contain a spring-mounted overload protection system that permits max. 300 N spring force and at least 51 mm spring travel.

METHOD OF FUNCTIONING

The pressing module moves simultaneously with the horizontal stroke of the handling module. The downward movement is performed synchronously with the retraction of the handling module.

TECHNICAL DATA

Maximum pressing force:	200 N	
Stroke dependencies [mm]:		
Vertical stroke of the handling module	30.0	≥ 40.0
Stroke of the pressing module	40.5	49.5
Bottom position (distance A)	79.3	75.0

PM 1500

TECHNICAL DATA

Rotary indexing table, basis:	TR 1100A (for specifications, see TR rotary indexing tables)
Max. number of modules:	24
Number of stations on rotary table:	6 to 36

Diameter of stationary module plate:	1210 mm
Diameter of rotary ring:	Standard 1500 mm (other diameters possible)
Possible base frames:	SR0300B or SK0300B

The maximum number of modules and the smallest spacing distance possible must be reviewed for each application from a design point of view and depend on the type of module and the desired sequence.

PM 1500E HANDLING MODULE

If required, the vertical guide assembly can be mounted at two heights with a difference of 33 mm (see figures for assembly 1 and assembly 2).

For all stroke variants, the stroke including adjustment limits can only lie within the grey shaded area. For pre-adjustment in the factory, the adjusting dimensions \mathbf{H} and \mathbf{V} must be specified when ordering. The final adjustment is performed by the customer after fitting the gripper.

Assembly 1 - bottom vertical rail
Position of the handling unit: top - outside

Assembly 2 - top vertical rail
Position of the handling unit: top - outside

Standard adapter plate ($40 \times 64 \times 8 \mathrm{~mm}$) with drilling pattern ($2 \times$ DRM $5 \mathrm{H} 7 ; 2 \times \mathrm{M} 5$) for mounting to the guide (customised configurations possible)

TECHNICAL DATA

Maximum extra weight:
2 kg (depending on speed and number of modules)
Standard strokes:

Vertical stroke [mm]	30	40	$50^{* *}$		
of which linear without crossover (approx.) [mm]	25	30	37.5		
Horizontal stroke [mm]	80	90^{*}	100	120	140
of which linear without crossover (approx.) [mm]	65	75	85	100	115

[^17]
PM 1500H LIFTING MODULE

USING THE LIFTING MODULE

The lifting module can be used for vertical movement of test equipment. In order to avoid crash situations, the test medium must contain a spring-mounted overload protection system that permits max. 50 N spring force and at least 71 mm spring travel.

METHOD OF FUNCTIONING

The lifting module moves simultaneously with the horizontal stroke of the handling module. The downward movement is performed synchronously with the retraction of the handling module.

TECHNICAL DATA

Maximum weight to be moved:	1.5 kg	
Stroke dependencies [mm]:	30.0	≥ 40.0
Vertical stroke of the handling module	58.3	70.0
Stroke of the lifting module	100.0	94.0

PM 1500P PRESSING MODULE

APPLICATION

The pressing module can move the press head to the workpiece to be joined in the vertical direction. In order to avoid crash situations, the press head must contain a spring-mounted overload protection system that permits max. 300 N spring force and at least 51 mm spring travel.

METHOD OF FUNCTIONING

The pressing module moves simultaneously with the horizontal stroke of the handling module. The downward movement is performed synchronously with the retraction of the handling module.

TECHNICAL DATA

Maximum pressing force:	200 N	
Stroke dependencies [mm]:		
Vertical stroke of the handling module	30.0	≥ 40.0
Stroke of the pressing module	41.5	50.5
Bottom position (distance A)	$75-95$	$75-95$

The stroke position can be adjusted by means of a threaded bar.
W.A.S $2_{\text {wess }}$ APPLICATION SOFTWARE

WEISS APPLICATION SOFTWARE

W.A.S. 2

Intuitive operator concept: the elegant interface of W.A.S. 2 is also available for mobile devices as a Windows application or via a web interface.

THE WHOLE WORLD OF WEISS COMPONENTS IN A SINGLE SOFTWARE PACKAGE: W.A.S. 2

Discover the consistent further development of the WEISS Application Software. Easy-to-use, intuitive and compatible with all WEISS automation components - even for complete multi-axis systems and LS 280 (W.A.S. 2 LS)

PLUG \& WORK FOR STANDALONE OR SYSTEM MODULES

The new WEISS Application Software (W.A.S. 2) makes setting up and controlling all WEISS components a breeze - whether individually or in combination as a multi-axis system. All system combinations can be configured without any issues - whether electromechanical or servomechanical rotary tables with directdrive rotary or linear units.

MAXIMUM OPERATOR CONVENIENCE

Whether using the Windows programme or a web browser, the interface is so easy and intuitive to use that no detailed control system knowledge is required for commissioning. Even plant engineering firms without their own software specialists can set up their own modules without any problems.

Whether rotary table, handling unit or linear axis, the complete range of WEISS components can be controlled easily and precisely using W.A.S. 2.

SMART ENERGY MANAGEMENT

Further advantages include the diverse monitoring and diagnostics functions. And when it comes to energy management: the software enables precise energy analysis with minute-by-minute measurement and saving of energy consumption values. Even energy recovery can be used with an active power supply unit.

ADVANTAGES

- Quick and easy commissioning for complete multiaxis systems
- Plug \& work even without any special knowledge
- Intuitive user interface that can be accessed via web browsers on both mobile terminals and PCs
- Output increase of up to 30% thanks to shorter process times
- Smart energy management for precise analyses
- Monitoring and diagnostic functions

W.A.S. 2

WEISS APPLICATION SOFTWARE

WEISS APPLICATION SOFTWARE

- Control packages matched to the respective requirements are available: SCALABLE, COMPACT and LS
- All positions and speeds are freely programmable
- Free language selection
- Easy access to all axis parameters

Diagnostic functions

- Inputs and outputs can be forced
(e.g. for start-up)
- Alarm history
- Logbook
- Oscilloscope software

DESIGN AND CONNECTION

- Plug \& Work
- Vorparametriertes Steuerpaket
- Finished parameter sets for all WEISS components
- Passend aufeinander abgestimmte Komponenten

Große Flexibilität bezüglich Leitungslänge und Schnittstellen

DIMENSIONS

Based on the number of axes, the supply voltage, the configuration level and the hardware manufacturer(s)

To perform diagnostics on the fieldbus interface, the logbook records the timing of the command sequence.

COMMUNICATION

- Digital I/O (24 V inputs and outputs)
- Profibus-DP
- EtherNet/IP (Rockwell)
. PROFINET
- EtherCAT
- More available on request

SAFETY AND SERVICE

- Safe torque off function integrated
- Safe Motion on request
- Worldwide service / complete UL approval
- Comprehensive safety and monitoring functions
- Remote maintenance

The I/O monitor is used for commissioning and for handshake diagnostics.

W.A.S. 2 LS
 wiss apulcatoon sormant

WEISS APPLICATION SOFTWARE

The W.A.S. 2 LS (WEISS Application Software for LS 280) program for Windows is for controlling the linear assembly system while also acting as the interface to the higher-level customer control system. In addition to the basic functionality for the start-up the software provides many further functions.

- Visualisation
- Free language selection
- Status bar for the single cells
- Display of alarm messages
- Easy access to parameter of the cells
- Inputs and outputs can be forced
- Monitoring functions
- Alarm history
- Diagnostic functions
- Ethernet connection to the control
. Load and display a parameter set "offline"

DESIGN AND CONNECTION

- One master PLC per base machine LS 280
- Decentralised control packages per assembly cell
- Communication of the cells via system bus
- Centrally saved parameter file
- Standardised design with plugable system
- Fieldbus interfaces for customer interface

SAFETY AND SERVICE

- Frequency inverter with integrated restart protection Safe torque off (SIL 2, PL "d")
- Depending on brand, configuration and wiring of the frequency inverter, a Safe torque off (SIL 3, PL "e") can be reached.
- Comprehensive monitoring functions
- Remote maintenance
- Worldwide service

COMMUNICATION

At the master PLC of the base machine LS 280 the following interfacesto the higer level main control system of the customer are available:

- Profibus-DP
- EtherNet/IP (Rockwell)
- PROFINET
- EtherCAT
- More available on request

W.A.S. 2 SCALABLE

WEISS APPLICATION SOFTWARE

W.A.S. 2 SCALABLE ELECTRICAL DATA FOR THE CONTROL HARDWARE

Product	Mains voltage	Supply 24 V ± 5 \%	Connected load max.	Installation dimensions WxHxD (without CPU)
NC 150T	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
NC 150T	400 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
NC 220T	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
NC 220T	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
NC 320T	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
NC 320T	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
NR 7502	400 V	2.5 A	10 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
NR 11002	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
NR $1500 Z$	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
NR 22002	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
CR 1000C	400 V	2.8 A	30 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
CR 1300C	400 V	2.8 A	30 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
CR 2000C	400 V	4.6 A	54 kVA	$276 \times 460 \times 295 \mathrm{~mm}$
CR 300E	400 V	2.5 A	10 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
CR 400E	400 V	2.5 A	10 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
CR 500E	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
CR 700C	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
TH 700F	400 V	2.8 A	17 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
TH 1000F	400 V	2.8 A	30 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
TO 150C-B	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
TO 150C-B	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
T0 400	400 V	2.8 A	30 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
TO 750C	400 V	2.8 A	30 kVA	$200 \times 375 \times 234 \mathrm{~mm}$
TO 1300	400 V	On request		
TO 220C-B	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
TO 220C-B	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
ST 55, ST 75-1-2-3	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
ST 55, ST 75-1-2-3	400 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$

Product	Mains voltage	Supply $24 \mathrm{~V} \pm 5$ \%	Connected load max.	Installation dimensions WxHxD (without CPU)
ST 140-1	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
ST 140-1	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
ST 140-2	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
ST 140-2	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
TW 150	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
TW 150	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
TW 200	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
TW 200	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
TW 300	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HP 70 T	230 V	2.94 A	2.7 kVA	$60 \times 257 \times 220 \mathrm{~mm}(\times 2)$
HP 70T	400 V	5 A	6 kVA	$71 \times 375 \times 236 \mathrm{~mm}(\times 2)$
HP 140T	230 V	2.94 A	2.7 kVA	$60 \times 257 \times 220 \mathrm{~mm}$ ($\times 2$)
HP 140T	400 V	5 A	6 kVA	$71 \times 375 \times 236 \mathrm{~mm}(\times 2)$
HL 50	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HL 50	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HL 100	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HL 100	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HG 0012	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HG 0012	400 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HG 0025	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HG 0025	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HN 50	230 V	1.47 A	1.35 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HN 50	400 V	2.5 A	3 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HN 100	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HN 100	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HN 200	230 V	1.47 A	2.1 kVA	$60 \times 257 \times 220 \mathrm{~mm}$
HN 200	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HN 400	400 V	2.5 A	5 kVA	$71 \times 375 \times 236 \mathrm{~mm}$
HN 400	230 V	On request		

CPU MOTION CONTROLLER (ONE PER W.A.S. 2 SCALABLE SYSTEM)

W.A.S. 2 COMPACT

WEISS APPLICATION SOFTWARE

1 to 4 axes possible
Defined interfaces
Small installation space
W.A.S. 2 COMPACT ELECTRICAL DATA FOR THE CONTROL HARDWARE

Product	Mains voltage	Supply $24 \mathrm{~V} \pm 5$ \%	Connected load max.	Installation dimensions WxHxD
TO 150C-B	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
TO 150C-B	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
T0 400	400 V		On request	
TO 750C	400 V		On request	
TO 1300	400 V		On request	
TO 220C-B	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
TO 220C-B	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
ST 55, ST 75-1-2-3	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
ST 55, ST 75-1-2-3	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
ST 140-1	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
ST 140-1	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
ST 140-2	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
ST 140-2	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
TW 150	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
TW 150	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
TW 200	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
TW 200	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
TW 300	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
HP 70T	230 V	6.6 A	1.84 kVA	$50 \times 196 \times 215 \mathrm{~mm}(\times 2)$
HP 70T	400 V	6.6 A	3.08 kVA	$50 \times 196 \times 215 \mathrm{~mm}(\times 2)$
HP 140T	230 V	6.6 A	1.84 kVA	$50 \times 196 \times 215 \mathrm{~mm}(\times 2)$
HP 140T	400 V	6.6 A	3.08 kVA	$50 \times 196 \times 215 \mathrm{~mm}(\times 2)$
HL 50	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HL 50	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HL 100	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HL 100	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
HG 0012	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HG 0012	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HG 0025	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$

Product	Mains voltage	Supply $24 \mathrm{~V} \pm 5$ \%	Connected load max.	Installation dimensions WxHxD
HG 0025	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HN 50	230 V	3.3 A	0.92 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HN 50	400 V	3.3 A	1.54 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HN 100	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HN 100	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
HN 200	230 V	3.3 A	1.55 kVA	$50 \times 196 \times 215 \mathrm{~mm}$
HN 200	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
HN 400	400 V	3.3 A	3.5 kVA	$70 \times 196 \times 268 \mathrm{~mm}$
SH 75T	230 V	On request		
SH 75T	400 V	On request		

LOCAL PRESENCE

SHANGHAI, SINGAPORE, CLEVELAND OR BUCHEN - WE ARE WHERE YOU ARE.

GERMANY

WEISS GmbH

Siemensstraße 17
74722 Buchen
Phone +49 (0)6281 5208-0
Fax $\quad+49$ (0)6281 5208-99
E-Mail info@weiss-gmbh.de
Website www.weiss-gmbh.de

SWITZERLAND

WEISS Schweiz GmbH

Friedhofstrasse 7
2540 Grenchen
Phone +41 (0)3265360 10
Fax $\quad+41(0) 326536011$
E-Mail info@weiss-gmbh.ch
Website www.weiss-gmbh.ch
NETHERLANDS

WEISS Nederland

Kruisstraat 4
7573 GJ Oldenzaal
Phone +31 (0)541853524
Fax $\quad+31$ (0) 847118833
E-Mail info@weiss.nl
Website www.weiss.nl

UK

WEISS UK Ltd.
Meridian House
Winsford Ind Estate
Winsford
Cheshire, CW7 3RG
Phone +44 (0)1606 860567
E-Mail info@weiss.uk.com
Website www.weiss.uk.com

SPAIN

WEISS España

Tecnología en máquinas
especiales, S.L.
Avda. Juan Carlos I, $\mathrm{N}^{\circ} 13,3^{\circ} \mathrm{A}$
„,Torre Garena"
28806 Alcalá de Henares (Madrid)
Phone +34 (0)91830 0686
Fax $\quad+34(0) 918300687$
E-Mail info@weiss-gmbh.es
Website www.weiss-gmbh.es

ITALY

WEISS Italia S.r.I.
Via dell'Arcoveggio 49/5
40129 Bologna
Phone $+39(0) 510474967$
E-Mail info@weiss-italia.it
Website www.weiss-italia.it

POLAND
WEISS Poland Sp. z o. o.
ul. Wielicka 250
30-663 Kraków
Phone +48 (0)12 2812362
E-Mail info@poland.com
Website www.weiss-poland.com

USA |CANADA
WEISS North America, Inc.
3860 Ben Hur Avenue, Suite 3
Willoughby, OH 44094
Phone +1888 WEISSNA (888-934-7762)
Fax +1440-269-8036
E-Mail info@weissna.com
Website www.weissna.com

Disclaimer

The WEISS product catalogue has been compiled with the greatest of care. Nonetheless, the details given are only for non-binding general information and do not replace in-depth individual consulting for a purchase decision. WEISS GmbH assumes no liability for the correctness, completeness, quality of the information provided nor that it is up to date. Liability for material defects and deficiencies in title pertaining to the information, in particular for its correctness, freedom from third-party intellectual property rights, completeness and usability is excluded - except in cases of intent or fraud. WEISS GmbH shall be freed from all other liability, unless it is mandatorily liable pursuant to the German Product Liability Law for intentional or fraudulent action or for a breach of significant contractual duties. Liability due to a breach of significant contractual duties is restricted to typical, foreseeable damages - except in cases of intent or gross negligence.

Copyright

© WEISS GmbH, Buchen, Germany. All rights reserved. All content such as texts, images and graphics, as well as arrangements thereof, are subject to protection by copyright and other laws on the protection of intellectual property. Content of this catalogue may not be copied, distributed or changed for commercial purposes. Some content is further subject to third-party copyright. The intellectual property is protected by various laws such as the industrial property rights, trademark rights, and copyright of WEISS GmbH.

INSPIRING PEOPLE GREAT SOLUTIONS

[^0]: $\mathbf{J}_{\mathbf{2 M a x}}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. $80-130 \mathrm{~ms}$ longer than the value specified in the table (see also the note on page 17).
 *EF2 - Control recommended to minimise brake wear (see page 48).

[^1]: $\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time
 measured from the start signal to the electric position indication is approx. $80-130 \mathrm{~ms}$ longer than the value specified in the table.
 EF2 - Control recommended to minimise brake wear (see page 48).

[^2]: * Dimensions for motor BG 71 (2-stage)

[^3]: * Dimensions for motor BG 71 (2-stage)

[^4]: $\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. $80-130 \mathrm{~ms}$ longer than the value specified in the table.
 *EF2 - Control recommended to minimise brake wear (see page 48).

[^5]: $\mathbf{J}_{2 \text { Max }}=$ max admissible mass inertia loading $\left(\mathrm{kgm}^{2}\right) \mathbf{t}_{\mathbf{i}}=$ cycle time (sec.) Depending on motor size, electronics and time optimisation settings, the cycle time measured from the start signal to the electric position indication is approx. $80-130 \mathrm{~ms}$ longer than the value specified in the table.
 *EF2 - Control recommended to minimise brake wear (see page 48).

[^6]: Length depending on encoder and brake options

[^7]: Length depending on encoder and brake options

[^8]: Stationary support

[^9]: Integrated switch cabinet on base frame

[^10]: A selection of layout examples of the LS 280 linear assembly system is available as a CAD file at www.weiss-international.com.

[^11]: A selection of layout examples of the LS 280 linear assembly system is available as a CAD file at www.weiss-international.com.

[^12]: Intermediate strokes available in 100 mm steps on request

[^13]: Strokes larger than 1000 mm and intermediate strokes in 100 mm increments available on request

[^14]: Strokes larger than 1000 mm and intermediate strokes in 100 mm increments available on request

[^15]: Strokes larger than 1000 mm and intermediate strokes in 100 mm increments available on request

[^16]: * The horizontal stroke of 90 mm can only be realised in combination with vertical strokes of 40 mm and 50 mm
 ** Only Assembly 1 possible, adjusting dimension V must be between 56 mm and 120 mm .

[^17]: * The horizontal stroke of 90 mm can only be realised in combination with vertical strokes of 40 mm and 50 mm .
 ** Only Assembly 1 possible, adjusting dimension V must be between 56 mm and 120 mm .

